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Abstract 

Background: Past studies have found associations between obesity and healthcare costs, however, these studies 
have suffered from bias due to omitted variables, reverse causality, and measurement error.

Methods: We used genetic variants related to body mass index (BMI) as instruments for BMI; thereby exploiting the 
natural randomization of genetic variants that occurs at conception. We used data on measured height and weight, 
genetic information, and sociodemographic factors from the Nord-Trøndelag Health Studies (HUNT), and individual-
level registry data on healthcare costs, educational level, registration status, and biological relatives. We studied 
associations between BMI and general practitioner (GP)-, specialist-, and total healthcare costs in the Norwegian set-
ting using instrumental variable (IV) regressions, and compared our findings with effect estimates from ordinary least 
squares (OLS) regressions. The sensitivity of our findings to underlying IV-assumptions was explored using two-sample 
Mendelian randomization methods, non-linear analyses, sex-, healthcare provider-, and age-specific analyses, within-
family analyses, and outlier removal. We also conducted power calculations to assess the likelihood of detecting an 
effect given our sample 60,786 individuals.

Results: We found that increased BMI resulted in significantly higher GP costs; however, the IV-based effect estimate 
was smaller than the OLS-based estimate. We found no evidence of an association between BMI and specialist or total 
healthcare costs.

Conclusions: Elevated BMI leads to higher GP costs, and more studies are needed to understand the causal mecha-
nisms between BMI and specialist costs.
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Introduction
Obesity is highly prevalent in populations around the 
world [1], and a vast array of prevention strategies and 
treatments have been proposed to mitigate the epidemic 
[2–5]. Economic evaluations of potential strategies and 
treatments are needed to identify how resources should 
be invested. Correct identification of cost-effective 

interventions requires that accurate data on the costs of 
obesity are used in economic evaluations.

A multitude of studies have assessed the costs of obe-
sity, and the findings of these studies have been sum-
marized in several reviews [6–16] that conclude that the 
economic burden of obesity is substantial. Traditionally, 
studies have typically used cross-sectional or longitudi-
nal data to assess the costs of obesity [14]. These study 
designs have some shortcomings that can lead to bias 
when estimating the effect of body mass index (BMI) 
on healthcare costs. One of the main challenges is that 
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several obesity-associated diseases are both risk factors 
for obesity and complications of obesity, and that health-
care use in itself can result in increased BMI (for exam-
ple due to side effects of medications [17]). Studies using 
cross-sectional data cannot overcome this issue because 
adjusting for obesity-related diseases could lead to over-
adjustment. Data from longitudinal studies can be used 
to net out all time constant characteristics. However, bias 
from variables that change over time will still be present, 
which means that simultaneity bias can be reduced, but 
not eliminated by using longitudinal data.

Another limitation is that most past studies use self-
reported BMI or healthcare costs in their calculations. 
Kent et  al., 2017 [14] found that 55 of the 75 studies 
included in their review used self-reported weight and/or 
height to estimate BMI. Measurement error in BMI due 
to self-reporting bias typically leads to an underestima-
tion of true BMI [18, 19]. Moreover 16 of the 75 studies 
used self-reported data on healthcare costs [14]. Often, 
individuals are unable to correctly recall the number of 
past healthcare contacts made, especially if contact fre-
quency is high [20]. In standard linear regressions, meas-
urement error in the independent variable may bias 
regression estimates towards zero, and measurement 
error in the dependent variable may increase variance 
hence decreasing power to detect a causal effect.

One way to overcome at least some of these endoge-
neity issues is by using an instrumental variable (IV) 
approach. In IV-analyses, omitted variable bias can be 
avoided if the instrument is uncorrelated with the omit-
ted variables. In the context of obesity, simultaneity bias 
can also be largely avoided if the instrument used is con-
stant throughout life. Measurement error can lead to bias 
even though an IV-approach is used [21], however, by 
using measured height and weight data and registry data 
on healthcare utilization, as we have done in the current 
study, we increase reliability of estimates from IV models.

In recent studies, the natural randomization that occurs 
due to the random allocation of genetic variants at con-
ception has been exploited by using genetic information 
as instrumental variables. The first studies to make use of 
genetic information in IV-analyses used the height and/
or weight of biological relative(s) as instruments [22–26]. 
These studies found that elevated BMI was associated 
with higher healthcare costs than when using non-IV 
methods. A potential limitation of using anthropometric 
measures of relatives is that effects of the household envi-
ronment on the association between BMI and healthcare 
costs cannot be ruled out.

In two more recent studies, Dixon et  al., 2020 [27], 
and Kurz and Laxy, 2020 [28] have tried to minimize 
bias from environmental concerns by conducting Men-
delian randomization (MR) analyses, that is, by using 

genetic variants associated with BMI as instruments. The 
first study used a UK Biobank sample, and found that 
obesity was associated with higher hospital costs than 
when using non-IV models [27]. The second study, using 
data from South-Western Germany, found that obesity 
resulted in total healthcare costs that were over twice as 
large compared with non-IV based estimates [28]. Both 
of these studies have important limitations. The sample 
used by Kurz and Laxy, 2020 [28] is small for the MR 
context (n = 2796), and the majority (99.5%) of the indi-
viduals included in the sample used by Dixon et al., 2020 
[27] were between 40 and 69 years of age. In addition, as 
Dixon et al., 2020 [27] point out, their sample population 
has lower mortality, lower levels of morbidity increas-
ing behaviors, and are better educated than the wider 
UK population. Moreover, neither of these studies inves-
tigated the effect of BMI on general practitioner (GP) 
costs. Studying the effects of GP costs gives an increased 
understanding of the consequences of obesity, because 
the mechanisms driving GP costs may differ from those 
of specialist costs.

Our study uses a sample with an appropriate size for 
the MR context, includes adults aged 20 years and above, 
and can be considered largely representative of the Nor-
wegian population. We have combined genotyped data 
from biological samples with data on measured height 
and weight, registry-based healthcare costs, sociodemo-
graphic variables, and relatedness. The objective of the 
study was to use genetic variants associated with BMI as 
instruments to estimate the effect of BMI on GP-, spe-
cialist-, and total costs in Norway. This was achieved 
by: 1) Estimating associations between BMI and GP-, 
specialist-, and total costs using ordinary-least squares 
(OLS) regression. 2) Re-estimating the same associations 
using two-stage least squares (2SLS) with three differ-
ent genetic instruments that were generated based on 97 
BMI-associated genetic variants [29]. 3) Conducting sen-
sitivity analyses, including two-sample methods (inverse-
variance weighted, MR-Egger, median-weighted, and 
modal weighted estimation), non-linear methods, sex-, 
healthcare provider, and age-specific analyses, within-
family analyses using family-fixed effects, and outlier 
removal; to explore the robustness of our estimates and 
the validity of our instruments. We then discussed the 
findings from stages 1–3 and inferred about the causal 
effect of obesity on healthcare costs.

Methods
Data
In this study, we used a combination of survey data and 
registry-based data. The five primary data sources used 
are presented in Fig. 1.
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Data on BMI, sociodemographic factors, and genetic 
information
The HUNT study has been described in detail elsewhere 
[30, 31]. In brief, the HUNT study is a population-based 
cohort study. All inhabitants of Nord-Trøndelag (a rural 
geographical region in Central Norway) who turned 
20 years of age during the study period were invited to 
participate. So far, four waves have been conducted, and 
we have used data from the second (HUNT 2) and third 
(HUNT 3) waves. The first wave did not contain genetic 
information, and the results from the fourth wave were 
unavailable at study initiation. Of those that were invited 
to take part in the study, 69.5% (n = 65,261) of adults in 

HUNT 2, and 54.1% (n = 50,809) of the adults in HUNT 
3 participated. Data were collected between August 1995 
and June 1997 (HUNT 2), and between October 2006 
and June 2008 (HUNT 3). The studies consisted of ques-
tionnaires, clinical measurements, and collection of bio-
logical materials for DNA genotyping (performed using 
Illumina HumanCoreExome arrays). We used informa-
tion about participants’ measured height (clinically meas-
ured to the nearest centimeter) and weight (clinically 
measured to the nearest half-kilogram without shoes and 
while participants were wearing light clothing) [30], soci-
oeconomic variables (including age, sex, marital status, 
urbanity, and smoking status), genetic variants related to 

Fig. 1 Overview of data sources used in the study
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obesity, and genetic principal components. A description 
of the handling of the genotyped data, including informa-
tion about the quality control and imputation procedures 
is included in the Additional Information File.

If the same individuals had participated in both HUNT 
2 and HUNT 3, we used data from HUNT 3 (Fig.  1) 
since this was closer to the time at which healthcare 
costs were measured.

Data on healthcare costs
The Norwegian healthcare system is divided into pri-
mary- and specialist care. All registered inhabitants have 
a right to a regular GP, and approximately 99% of inhabit-
ants are registered within the GP system [32]. GP services 
are part of the primary care sector, and GPs have a gate-
keeping function so patients need a referral from primary 
care to access specialist care. Norway has a universal and 
publicly financed healthcare system, which is free for all 
children up to age 16 (18 for mental health services). For 
adults outpatient health services are subsidized and inpa-
tient care is free. Nearly all specialist care and GP costs 
are included in the Norwegian Patient Register (NPR) 
and The Norwegian Control and Distribution of Health 
Reimbursement Database (KUHR). The NPR also con-
tains information about utilization of private institutions 
and specialists that are contracted to the public health-
care system [33]. Some healthcare costs are not included 
in our data, and these include for example: physiotherapy, 
nursing home costs, and dental care.

We used a de-identified key to link the data from 
HUNT with data from the NPR and the KUHR database. 
Norwegian hospitals are partly reimbursed via activity-
based financing, and these reimbursements are based on 
the Diagnosis Related Group (DRG)-system. Our spe-
cialist care data included data on somatic, psychiatric, 
and substance abuse-related inpatient and outpatient 
contacts that occurred from 2009 to 2016. For episodes 
of care for which DRG-weights were available, we mul-
tiplied the DRG-weight pertaining to each particu-
lar episode by the average price of a DRG [34–41] (i.e. 
average patient cost) for the year during which the DRG 
was registered. Where DRG-weights were not available 
(such as for psychiatric contacts) we used data on the 
average cost of similar contacts for that particular year 
(details are available in the Additional information). We 
then summed the costs for each year per patient for the 
years that the patient was alive and living in Norway, and 
adjusted the yearly costs to 2016 price levels [42, 43]. 
Finally, we calculated the average yearly specialist cost 
per patient during the study period.

The KUHR database contains all electronic patient 
claims made by general practitioners, and includes 
information about reimbursed amounts, and patient 

co-payments for all consultations. To compute GP costs 
we summed reimbursed amounts and co-payments for 
each patient for each year between 2009 and 2016 that 
the patient was alive and living in Norway. We then 
adjusted the costs to 2016 price levels, and calculated the 
average yearly cost per patient. All costs were converted 
from Norwegian Kroner (NOK) to 2016 Euros (1.00 
€ = NOK 9.29) [44].

Data on education, registration status, and relatedness
Next, we linked our dataset with data on educational 
level from the NUDB database. Age, sex, marital status, 
urbanity, smoking status, and BMI was measured dur-
ing the HUNT studies, and were therefore registered 
at approximately the same time as BMI was measured. 
For consistency we therefore used education in 1996 
for those with a BMI registered in HUNT 2 and educa-
tional level registered in 2007 for those whose BMI was 
reported in HUNT3. The dataset was then linked with 
data from the Norwegian Population Register on regis-
tration status, and individuals were included only dur-
ing the years that they were alive and living in Norway. 
Finally, our data were combined with data on related-
ness, which allowed us to identify individuals with the 
same parents.

Regression models
We investigated the effect of BMI on average yearly GP 
costs, specialist costs, and total costs using a naïve OLS 
model, and using a 2SLS IV-regression using genetic vari-
ants as instruments. The ivregress function in STATA was 
used to conduct the 2SLS analyses. In the first stage of 
these analyses, we regressed BMI on each of the instru-
ments (Z) and the control variables (Sex, birthyear, and 
study (a dummy variable indicating whether participants’ 
BMI was measured in HUNT 2 or HUNT 3.) (Eq. 1)

Then, in the second-stage (Eq.  2), we used the pre-
dicted values from the first-stage to estimate healthcare 
costs in the second stage, using the same control vari-
ables. The standard errors were corrected for in the two-
step procedure.

The analyses were performed with and without sex-
stratification. Sex-stratification was done because it is 
known that BMI affects the health of males and females 
differently. However, stratification requires more 

(1)
BMIi = π0 + π1Zi + π2Sexi + π3birthyeari + π4studyi + vi,

(2)HCCi = 𝛽0 + 𝛽1
̂BMIi + 𝛽2Sexi + 𝛽3birthyeari + 𝛽4studyi + ui ,
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power, and interventions and treatments are often 
independent of sex.

Since genetic variants are randomly allocated at concep-
tion conditional on parental genes, genetic instruments 
should not be confounded by other variables. However, 
the relationship between genetic factors and phenotype 
expression is not fully understood [45], and if adjusting for 
potential confounders alters the findings then this could 
indicate that there is a problem with the instrument, and 
could warrant further investigation. Also, adjusting for 
confounders might reduce the residual variability of the 
dependent variable. We explored adjusting for: i) study 
period (HUNT 2 or HUNT 3), data years (years of data 
each participant was residing in Norway) (categorical: 
1–8 years), birth year (categorical: years 1906–1989), and 
sex (categorical), and ii) study period, data years, birth 
year, sex, educational level (categorical), marital status 
(categorical), smoking status (categorical), and urban-
ity (categorical). These particular variables were selected 
since these are typically included as potential confounders 
in analyses assessing the effect of BMI on healthcare costs 
[14]. In the MR analyses, we also explored the effect of 
adjusting for the first 10 principal components, to adjust 
for potential population stratification. The statistical 
power to detect an effect of BMI on GP-, and specialist- 
cost given our sample of 60,786 individuals was estimated 
using the mRnd power calculator [46]. Details of the 
power analyses are available in the additional information 
and the results are depicted in Fig. S1.

The genetic instruments
Locke et al., 2015 [29] present 97 genetic variants that 
have been found to be associated with BMI in genome 
wide association studies (GWAS), and report the 
strength of the association between each of these vari-
ants and BMI. Only one of these variants (rs12016871) 
were unavailable in our dataset, and for this variant we 
followed Brandkvist et  al., 2019 [47], and used vari-
ant rs4771122 as a proxy. IV-analyses were conducted 
with three instruments: Instrument 1: An unweighted 
genetic risk score (GRS) based on the sum of the 
number of BMI-increasing alleles, out of the 97 BMI-
increasing alleles, for each participant. Instrument 2: 
A weighted GRS which was computed by multiplying 
the number of BMI-increasing alleles by the respec-
tive beta-coefficients from the study by Locke et  al., 
2015 [29], and then summing the product for each par-
ticipant. For the sex-stratified analyses we developed 
sex-specific weighted GRSs using the sex-specific beta-
coefficients reported by Locke et al., 2015 [29]. Instru-
ment 3: Including the two genetic variants with the 
strongest association with BMI (FTO (rs1558902) and 
MC4R (rs6567160) as dummy variables.

Instrument validity
Three conditions must be satisfied for an instrument to 
be regarded as valid.

1) The instrument must be highly correlated with the 
variables being instrumented, conditional on the 
other variables in the model (the relevance assump-
tion). In the GWAS that we used to select genetic 
variants for our instrument, each of the genetic 
variants were found to be associated with BMI 
[29], and this has been confirmed in a more recent 
GWAS [48]. However, the strength of the correla-
tion between each genetic variant and BMI varied 
between the genetic variants. An instrument can be 
considered weak if the first-stage F-statistic in the IV-
regressions is smaller than 10 (F < 10) [49]. A weak 
instrument will bias the 2SLS estimates towards the 
OLS estimate [50]. Combining genetic variants into a 
GRS, as we have done in this study, leads to a higher 
first-stage F-statistic, and reduced bias [51].

2) There should not be any omitted variables (meas-
ured or unmeasured) on the pathway between the 
instrument and healthcare costs (the independence 
assumption). The allocation of genes at concep-
tion can be regarded as random, and therefore we 
assume that the independence assumption largely 
holds. However, there are some potential problems, 
for example: i) mating can be non-random since indi-
viduals with similar phenotypes are more likely to 
mate (assortative mating), ii) genes are conditional 
on parents genes (dynastic effects), iii) one or more 
non-confounding variables can modify the effect of 
the genetic variants on healthcare costs (effect modi-
fication), iv) some allele variants are more likely to 
be inherited together than one would expect from 
chance (linkage disequilibrium) and if these over-
represented alleles lead to increased healthcare costs 
through pathways that are unrelated to BMI, then 
the study is likely to be biased [51]. And v) there 
are differences in the allele-frequencies of particular 
population sub-groups due to differential ancestry 
(population stratification) [52]. The independence 
assumption is not fully testable, but some methods, 
that will be described later, have been developed to 
assess some of the factors that can lead to violations 
of the independence assumption.

3) Each genetic variant should only affect healthcare 
costs via BMI (the exclusion restriction). This condi-
tion cannot be verified and will be violated if genetic 
variants that have been shown to be associated with 
BMI are simultaneously associated with other pheno-
typic traits that are unrelated to BMI (horizontal plei-
otropic effects), but related to healthcare costs. Since 
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the biological understanding of each of the genetic 
variants used in our study is limited, the extent of 
horizontal pleiotropy is unknown. Other possible 
violations of the exclusion restriction include, but 
are not limited to: linkage disequilibrium, popula-
tion stratification, and effect modification. In the 
next section, we will describe analyses that we have 
done to investigate the potential violations of the IV-
assumptions.

Sensitivity analyses
To investigate the possibility of bias in our estimates we 
conducted a series of sensitivity analyses, including two-
sample methods, non-linear analyses, sex-, healthcare 
provider-, and age-specific analyses, within-family analy-
ses, and outlier removal.

Two sample methods
The two-sample MR methods involved combining sum-
mary data on the genetic variant-BMI association from 
Locke et  al., 2015 [29] with data on the association 
between the genetic variants and GP-, specialist-, and 
total- costs, estimated from our data (Additional infor-
mation, Table S1). The overlap between our sample and 
the data used by Locke et al., 2015 [29] was minimal, and 
both studies provide results from samples with similar 
ancestries (European descent), and adjust for age and 
sex.. When the samples used in two-sample analyses are 
independent, the two-sample estimates will be biased 
towards zero, rather than the observational estimate [53].

We began by testing for heterogeneity of the genetic 
instruments using Cochran’s Q test. If there is more het-
erogeneity than one would expect from chance, then 
this might indicate violation of the IV-assumptions, for 
instance due to horizontal pleiotropy [54].

We further evaluate heterogeneity by applying the fol-
lowing two-sample methods: Inverse variance weighted 
estimation (IVW), MR-Egger regression (including 
MR-Egger with a SIMEX (Simulation Extrapolation cor-
rection), weighted median estimation, and weighted 
mode-based estimation. These methods primarily exam-
ine violations of the exclusion restriction, particularly 
horizontal pleiotropy. The methods rely on different 
assumptions that can only be partially tested. Thus, com-
paring findings from the different methods is advanta-
geous as this can reveal various potential threats to the 
IV-assumptions.

The Inverse variance weighted (IVW) method is a 
weighted linear regression of the summary SNP-health-
care cost association on the summary SNP-BMI asso-
ciations, with the intercept constrained to zero [55, 

56]. The IVW estimate is similar to the 2SLS estimate, 
and will be a poor estimate if there is bias due to plei-
otropy. The IVW method requires that any directional 
(non-zero) pleiotropic effects on the outcome are inde-
pendent of the SNP-BMI associations, and the NOME 
assumption, that there is no measurement error in the 
SNPs exposure association, to hold.

The MR-Egger method is similar to the IVW method, 
but the intercept is not constrained to pass through 
zero [54]. MR-Egger requires that the InSIDE (instru-
ment strength is independent of direct effects) and 
NOME assumptions hold [55]. Bias due to measure-
ment error was estimated using the regression dilution 
statistic ( I2GX ). If I2GX was < 90%, we used the SIMEX 
(Simulation Extrapolation) correction [55]. When this 
correction is applied the SNP-BMI associations are 
estimated in repeated simulations before they are com-
bined with the SNP-healthcare cost associations [55]. 
It is not possible to test the InSIDE assumption, but if 
it holds the slope estimated from MR-Egger regression 
can be interpreted as the true estimate under pleiotropy 
[54], and the intercept can be interpreted as an estimate 
of the average pleiotropic effect across the instruments 
[55]. If the InSIDE assumption is violated and there 
exists directional pleiotropy, then the MR-Egger esti-
mate may be biased. The MR-Egger estimates are less 
precise and have low power [57].

The weighted median approach uses the median of 
the inverse-variance weighted ratio estimates [57, 58]. 
This method is more robust to outliers than IVW and 
MR-Egger, and provides a consistent estimate if at least 
50% of the weight comes from genetic variants that are 
valid instruments [57].

The weighted mode approach uses the mode of the 
inverse-variance weighted ratio estimates [58]. This 
approach is more powerful than the MR-Egger and 
less powerful than the IVW and weighted-median 
approaches, and will give a consistent estimate if the 
largest weights originate from valid genetic variants [59]. 
This method requires that the zero modal pleiotropy 
assumption (ZEMPA) (i.e. that the most common effect 
is a consistent estimate of the true causal effect) holds 
[59]. This assumption was assessed by constructing den-
sity plots and inspecting these fore multiple peaks [59].

To ease interpretation of our findings, we followed 
Budu-Aggrey et al., 2019 [60] A, and Dixon et al., 2020 
[27], and transformed the two-sample estimates to natu-
ral BMI-units by dividing the estimates by the median 
standard deviation (4.6) of BMI reported by Locke et al., 
2015 [29]. As a result, the estimates from the two-sam-
ple methods can be interpreted as the marginal effect of 
a one-unit increase in BMI on healthcare costs.
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Some invalid some valid instrumental variables estimator
We used the sisVIVE (Some Invalid Some Valid Instru-
mental Variables Estimator), which uses LASSO to iden-
tify potentially invalid instruments, and to estimate a 
causal effect of the exposure on the outcome in the pres-
ence of invalid instruments [61]. First, we estimated the 
most appropriate lambda using ten-fold cross validation, 
then we use this lambda in estimating the effect estimate 
and potential invalid instruments. This was done using 
the sisVIVE package in R [61].

Non‑linear analyses
The associations between BMI and healthcare outcomes 
may be nonlinear [25, 62, 63]. Genetic variants explain a 
relatively small proportion of variance in BMI, and there-
fore non-linear effects might be challenging to detect. 
We used a method proposed by Staley and Burgess, 2017 
[64] to assess non-linearity in studies using genetic vari-
ants as instruments. The method includes two tests for 
nonlinearity: a quadratic and a fractional polynomial test. 
The sample was divided into 10 strata using residual BMI, 
and then linear IV-regression estimates were calculated 
for each stratum by dividing the association between the 
GRS and each healthcare cost outcome by the association 
between the GRS and BMI. Next, a meta-regression was 
performed, where the estimated values for each stratum 
are regressed against the mean of BMI in each stratum 
using a flexible semiparametric framework.

Stratified analyses
We performed analyses stratified by sex, and special-
ist healthcare provider (somatic hospital care, psychi-
atric hospital care, providers of somatic and psychiatric 
care that were contracted to specialist care, and contacts 
related to interdisciplinary specialized drug treatment).

Within family analyses
These analyses can provide information about the effect 
of possible violations of the IV-assumptions due to assor-
tative mating, dynastic effects and population stratifica-
tion [65]. There are several proposed methodological 
variations of within-family analyses [65]. We conducted a 
2SLS regression with family-fixed effects. These analyses 
require more power than population-based methods.

Outlier removal
We identified outlying genetic variants from forest plots 
of the effect of each of the genetic variants on GP- and 
specialist costs. Next, we used the the PhenoScanner 
database [66], to check if these genetic variants had been 
found to be associated with non-BMI related phenotypes. 
Then we explored the effect of removing the outermost 

outliers from the analysis. If removal of an outlier sub-
stantially alters the estimators, and the removed variant 
is an invalid instrument, then including this variant in 
our instrument may have biased the results.

Ethical approval
The study was approved by the Regional Committee for 
Ethics in medical research (2016/537/REK midt).

Software
STATA 15 was used for the regression analyses and R 
version 3.4.1 for data processing. The MR robust package 
[67] was used for two-sample MR analyses.

Results
Our dataset contained information about BMI, genetic 
variants related to BMI, sociodemographic variables 
(Table  1), GP-, specialist- and total costs (Table  1) for 
60,786 individuals.

The mean age of participants at BMI measurement 
was 51.1 years (S.D = 16.3) for males and 51.4 years 
(S.D = 16.9) for females. The average BMI of the par-
ticipants was 27.2 kg/m2 (S.D = 3.8) for males, and 
26.9 kg/m2 (S.D = 4.9) for females. During the eight-
year study period, 98.7% (n = 27,775) of males, and 
99.2% (n = 32,397) of females had incurred costs for GP 
services, and 68.2% (n = 19,180) of males, and 69.2% 
(n = 22,588) of females had incurred costs for special-
ist services. The average crude GP- and specialist costs 
generally increased with BMI, but costs were also high 
for males and females with underweight (Table  2). 
The average yearly GP cost was € 161.8 (S.D = 177.7, 
median = 108.1) for males, and € 196.5 (S.D = 182.7, 
median = 149.8) for females. The average yearly special-
ist cost was, € 2233.9 (S.D = 6698.0, median = 226.4) for 
males, and € 2066.1 (S.D = 5702.0, median = 370.9) for 
females (Table 2).

Naïve OLS regression
Increased BMI was significantly associated with higher 
costs for males and females, and with and without adjust-
ing for potential confounding variables (Table 3).

2SLS IV regressions
The F-statistic was high, and well above 10, for the 
three instruments in all the analyses, indicating that 
our instruments were strong (Table  4). We found a 
positive association between BMI and GP costs when 
using the unweighted (p-value< 0.001) and weighted 
GRSs (p-value< 0.001), and found no evidence of an 
association (p-value = 0.398) when using the FTO/
MC4R instrument. The finding was consistent when 
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potential covariates were added to the model (Addi-
tional information, Table S2), and when the first 10 
principal components were added (Additional infor-
mation, Table S3).

Compared with the OLS estimates (Table 3) adjusted for 
study period, years of data, sex, and birth year, the 2SLS 
effect estimates were 14% larger when using the unweighted 
GRS, 3% smaller when using the weighted GRS, and 69% 
smaller when using the FTO and MC4R instrument.

We did not find evidence of an association between 
BMI and specialist costs or between BMI and total 
costs, when using any of the three combinations of 

genetic variants as instruments. However, this could be 
due to a lack of power. The 2SLS coefficients (Table 4) 
were smaller, and had larger standard errors, compared 
with the OLS coefficients (Table 3). The same was found 
when adjusting for more potential covariates (Addi-
tional information, Table S2) and when adjusting for the 
first 10 principal components (Additional information, 
Table S3). The estimated coefficients when adjusting for 
either potential covariates, or the first 10 principal com-
ponents were similar to the coefficients estimates in the 
main 2SLS analysis (adjusted for study period, years of 
data available, sex, and birth year).

Table 1 Descriptive information by sex

a The BMI-categories were defined as follows: Underweight = BMI < 18.5, normal weight = BMI: 18.5–24.9, overweight = BMI: 25.0–29.9, class I obesity = BMI: 30.0–34.9, 
and class II obesity = BMI ≥35.0

Variable Category Males & females Sex

Male Female

N (%) N (%) N (%)

Total 60,786 (100.0) 28,136 (100.0) 32,650 (100.0)

Age 18–24 4090 (6.9) 1843 (6.7) 2247 (6.6)

25–44 18,506 (30.4) 8587 (30.4) 9919 (30.5)

45–66 26,389 (42.4) 12,553 (43.4) 13,836 (44.6)

67–79 9554 (16.2) 4256 (15.7) 5298 (15.1)

80+ 2247 (4.1) 897 (3.7) 1350 (3.2)

Missing 0 (0.0) 0 (0.0) 0 (0.0)

Marital Status Married/ Registered partner 34,225 (54.5) 16,432 (56.3) 17,793 (58.4)

Unmarried 15,938 (23.3) 8321 (26.2) 7617 (29.6)

Divorced/separated 5786 (10.1) 2475 (9.5) 3311 (8.8)

Widow/Widower 4749 (11.9) 866 (7.8) 3883 (3.1)

Missing 88 (0.1) 42 (0.1) 46 (0.1)

Education Primary school 14,362 (25.7) 5978 (23.6) 8384 (21.2)

Secondary school 31,114 (46.2) 16,027 (51.2) 15,087 (57)

Higher Education. short 12,584 (25.0) 4420 (20.7) 8164 (15.7)

Higher Education. long 2571 (2.8) 1651 (4.2) 920 (5.9)

Missing 155 (0.3) 60 (0.3) 95 (0.2)

Urbanity Urban 39,362 (64.8) 18,197 (64.8) 21,165 (64.7)

Rural 21,124 (34.6) 9825 (34.8) 11,299 (34.9)

Missing 300 (0.6) 114 (0.5) 186 (0.4)

Smoking status Smoker 13,141 (23.1) 5589 (21.6) 7552 (19.9)

Former smoker 18,347 (27.2) 9474 (30.2) 8873 (33.7)

Never smoker 25,184 (43.4) 11,030 (41.4) 14,154 (39.2)

Missing 4114 (6.3) 2043 (6.8) 2071 (7.3)

BMI  categorya Underweight 373 (0.9) 82 (0.6) 291 (0.3)

Normal weight 20,451 (38.8) 7777 (33.6) 12674 (27.6)

Overweight 26,612 (37.3) 14,431 (43.8) 12,181 (51.3)

Class I Obesity 10,243 (16.5) 4869 (16.9) 5374 (17.3)

Class II Obesity 3107 (6.5) 977 (5.1) 2130 (3.5)

Missing 0 (0.0) 0 (0.0) 0 (0.0)
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Sensitivity analyses
Two‑sample Mendelian randomization
The Cochran’s Q tests indicated that there was hetero-
geneity when assessing the association between BMI 
and GP costs (Q = 131.5, p-value = 0.008), special-
ist costs (Q = 129.1, p-value = 0.012), and total costs 
(Q = 128.5, p-value = 0.013). Heterogeneity might 
suggest violations of the IV assumptions, for instance 
through horizontal pleiotropy.

The results of the two-sample methods are presented 
and together with the OLS and one-sample estimates. The 
regression dilution statistic ( I2GX ) was 89.8, indicating that 
the MR-Egger estimate had a 10.2% relative bias towards 
the null. Since the bias was greater than 10%, we also 

conducted an MR-Egger with SIMEX to adjust for attenu-
ation bias.

For GP costs, there seemed to be some bias due to 
horizontal pleiotropy. The MR-Egger, median- and 
mode- based estimates also suggested that the true 
(pleiotropy-adjusted) estimate was below the IVW 
estimate (Fig. 2, Additional information, Fig. S3A). Evi-
dence of horizontal pleiotropy was also found when 
plotting the effect-sizes for each genetic variant against 
the strength of the association between each genetic 
variant and BMI in a funnel plot (Additional informa-
tion, Fig. S2A).

We had no way of ascertaining whether the assump-
tions required for the MR-Egger estimate to hold were 

Table 2 Mean (standard deviation (S.D)) crude sex- and BMI-specific yearly healthcare costs

a The BMI-categories were defined as follows: Underweight = BMI < 18.5, normal weight = BMI: 18.5–24.9, overweight = BMI: 25.0–29.9, class I obesity = BMI: 30.0–34.9, 
and class II obesity = BMI ≥35.0

Type of healthcare BMI-categorya Males & females Sex

Male Female

Mean (S.D) (€) Mean (S.D) (€) Mean (S.D) (€)

GP costs Underweight 201.7 (216.8) 122.2 (121.2) 224.1 (232.1)

Normal weight 154.4 (163.9) 134.7 (165.8) 166.4 (161.5)

Overweight 175.3 (173.1) 157.3 (166.8) 196.6 (177.9)

Class I Obesity 216.1 (199.3) 198.1 (195.3) 232.4 (201.5)

Class II Obesity 276.5 (233.3) 267.9 (253.9) 280.4 (223.2)

Specialist Costs Underweight 3454.3 (10,268.7) 2496.0 (6469.4) 3724.2 (11,101.2)

Normal weight 1804.9 (5616.0) 1949.7 (5982.9) 1716.1 (5376.6)

Overweight 2130.9 (6193.9) 2225.4 (7046.7) 2019.0 (4996.4)

Class I Obesity 2481.4 (6536.6) 2387.8 (5839.9) 2566.2 (7108.5)

Class II Obesity 3214.1 (7479.6) 3831.7 (9849.7) 2930.8 (6073.2)

Total costs Underweight 3656.0 (10,343.2) 2618.3 (6517.7) 3948.4 (11,179.3)

Normal weight 1959.3 (5667.6) 2084.4 (6040.3) 1882.5 (5425.1)

Overweight 2306.2 (6247.1) 2382.7 (7096.4) 2215.5 (5058.6)

Class I Obesity 2697.5 (6602.6) 2585.9 (5915.0) 2798.6 (7167.9)

Class II Obesity 3490 (7556.8) 4099.6 (9934.7) 3211.2 (6149.5)

Table 3 OLS estimates of the effect of BMI on GP-, specialist- and total costs

*** (p-value < 0.001)
a  Estimates were adjusted for study period, years of data available, birth year, and sex
b  Estimates were adjusted for study period, years of data, birth year, sex, educational level, smoking status, marital status, and urbanity

Type of healthcare costs Adjustment Males & females Males Females
Beta (SE) (€) Beta (SE) (€) Beta (SE) (€)

General practitioner costs Ia 5.8 (0.16)*** 7.0 (0.26)*** 5.5 (0.20)***

IIb 5.8 (0.16)*** 6.9 (0.26)*** 5.5 (0.20)***

Specialist costs I 44.6 (5.40)*** 50.8 (9.91)*** 45.2 (6.24)***

II 52.0 (5.48)*** 57.9 (10.04)*** 50.8 (6.34)***

Total costs I 45.7 (5.40)*** 52.1 (9.91)*** 46.2 (6.24)***

II 53.0 (5.48)*** 59.1 (10.05)*** 51.8 (6.34)***
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violated, and we have no reason to believe that the 
median-based estimate was unreliable. The modal-
based estimate, however, should be interpreted with 
some caution, as we found some indication of modal 
pleiotropy (Additional information, Fig. S6A). The 
p-values for all the two-sample estimates, except the 
IVW estimate, were weakly or not significant (Fig.  2), 
but this could be due to a lack of power since these 
methods require more power to detect an effect than 
the one-sample methods.

For specialist costs, there were also some indications 
of horizontal pleiotropy (Fig.  2, Additional information 
(Fig. S3B), but the different two-sample methods indi-
cated pleiotropy in different directions. The MR-Egger 
estimates suggested that the true association between 
BMI and specialist costs was higher than the IVW esti-
mate. The median- and modal-based estimates, how-
ever, indicated that the true effect was smaller than the 
IVW estimate. The modal plot exhibited some evidence 
of modal pleiotropy (Fig. S6B). Visual inspection of the 

Table 4 2SLS  estimatesa of the effect of BMI on GP-, specialist-, and total costs

*** (p-value < 0.001)
a  The estimates were adjusted for study period (HUNT 2 or HUNT 3), years of data participants were alive and living in the country during the cost estimation period 
(2009–2016), sex, and birth year

Type of healthcare cost Instrument 2SLS First-stage Beta 
instrument (SE)

2SLS Second-stage Beta BMI 
(SE) € F-stat.

General practitioner costs Unweighted GRS 0.1 (0.003)*** 6.6 (1.177)*** 1123.0

Weighted GRS 4.0 (0.105)*** 5.6 (1.026)*** 1484.4

FTO &
MC4R

0.4 (0.025)*** &
0.3 (0.028)***

1.8 (2.116) 173.2

Specialist costs Unweighted GRS 0.1 (0.003)*** 2.3 (40.035) 1123.0

Weighted GRS 4.0 (0.105)*** 14.9 (34.915) 1484.4

FTO &
MC4R

0.4 (0.025)*** &
0.3 (0.028)***

−0.3 (71.640) 173.2

Total costs Unweighted GRS 0.1 (0.003)*** 3.3 (40.053) 1123.0

Weighted GRS 4.0 (0.105)*** 15.8 (34.932) 1484.4

FTO &
MC4R

0.4 (0.025)*** &
0.3 (0.028)***

−0.4 (71.675) 173.2

Fig. 2 Estimates and 95% confidence intervals (CIs) of the effect of BMI on GP (left) and specialist (right) costs using OLS, one-sample, and 
two-sample methods
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funnel plot (Additional information, Fig. S2B) indicated 
slight asymmetry indicating that the true value could be 
smaller than the IVW estimate. None of the two-sample 
estimates for specialist costs were statistically signifi-
cant, but we had limited power to detect an effect. Since 
total costs were largely driven by specialist costs, the 
results for total costs were similar to those reported for 
specialist costs.

Some invalid some valid instrumental variables estimator
The sisVIVE did not identify any invalid instruments in 
any of the analyses. For GP costs (Additional Informa-
tion, Table S4), the coefficients were similar to the results 
from the 2SLS analyses, and also corresponded well with 
the 2SLS results in that the estimated coefficients were 
slightly lower for females than for males. Although sis-
VIVE was not able to detect any invalid instruments, the 
results indicate that potentially invalid instruments may 
affect the healthcare costs of males and females differ-
ently. As the number of invalid instruments increased, 
the estimated coefficient became higher for males and 
lower for females. For specialist costs the results for 
males and females together were larger than the 2SLS 
estimates, and similar to the OLS estimates.

Non‑linear analyses
There was some evidence of nonlinearity in the associa-
tion between BMI and GP-costs (Additional information, 
Fig. S7). The p-values from the quadratic and fractional 
polynomial tests were both < 0.05. The corresponding 
tests for the association between BMI and specialist costs 
did not suggest non-linearity.

Sex, healthcare provider, and age specific analyses
In the 2SLS analyses, we found some indications that 
healthcare costs differed between males and females 
(Additional information, Table S5). For both males and 
females, we found an association between BMI and GP 
costs when using the unweighted and weighted GRSs 
(p-value< 0.0001 for males and females), but not when 
using the FTO & MC4R instrument (p-value = 0.386 for 
males, p-value = 0.075 for females). For both males and 
females, the second-stage coefficients when using the 
GRSs as instruments were similar to the OLS estimates, 
and the coefficients were smaller when using the FTO & 
MC4R instrument.

For both males and females, we found no evidence of 
an association between BMI and specialist costs when 
using the three different instruments. Compared with 
the OLS estimates, the 2SLS coefficients were larger for 
males, and smaller (and negative) for females. However, 
we likely had insufficient power to detect effects of this 

size. Again, the results for total costs were similar to the 
results for specialist costs.

Stratifying specialist costs based on the healthcare 
provider indicated that the effects observed for spe-
cialist costs were mainly driven by costs incurred by 
patients that had received somatic care in hospitals 
(Additional information, Table S6). As with special-
ist costs overall, we found no significant association 
between BMI and healthcare costs, for any of the differ-
ent healthcare providers. For costs incurred in somatic 
hospitals and for contacts with specialists on contract 
with specialist care providers, we found a negative effect 
(not significant) of BMI on costs for females, and a posi-
tive effect (significant only for somatic hospital costs 
when using the weighted GRS instrument) of BMI on 
costs for males.

Outlier removal
For GP costs, we found three (rs4740619, rs13191362, 
and rs4787491) right-lying outliers (Fig. S4). One of these 
(rs4787491) had been found to be associated with sev-
eral potentially confounding phenotypes (such as: age at 
menarche, time spent driving, employment status, and 
alcohol intake frequency). Removing one or all of the 
outliers from the analyses on GP costs (Additional infor-
mation, Table S7) reduced the effect estimate by up to 
14% when using the unweighted GRS, and by up to 11% 
when using the weighted GRS.

For specialist costs, we identified one (rs7715256) right-
lying outlier (Fig. S5). This variant had been found to be 
associated with age at menarche, and basal metabolic 
rate, in addition to BMI-related phenotypes. Removing 
this outlier from specialist costs resulted in lower effect 
estimates (Additional Information, Table S8), but the 
effects remained non-significant.

Within‑family analyses
For GP costs, the results of the within-family analyses 
were similar to results from the full population analyses 
(€ 3.9 smaller when using the unweighted and weighted 
GRSs, and € 1.0 smaller when using the FTO & MC4R 
instrument) (Additional information, Table S9). For 
specialist costs the within-family estimates were con-
siderably smaller and negative when using all the 
instruments (€ 67.9 smaller when using the unweighted 
GRS, € 98.6 smaller when using the weighted GRS, 
and € 155.6 smaller when using the FTO and MC4R 
instrument), compared with the estimates from the 
full sample. None of the effect estimates were signifi-
cant. However, since the sample was reduced to 29,199 
observations, and 11,723 groups, we might have had 
insufficient power.
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Discussion
Compared with the naïve OLS estimates we found small 
and precise estimates of the effect of BMI on GP costs. 
Our results indicate that a one-unit increase in BMI 
increases GP costs by less than € 5.6 per year. Assuming 
linearity and that the difference in BMI between normal 
weight and obesity is 10.75 kg/m2 these results suggest 
that obesity leads to a maximum of € 60.2 higher GP-cost 
per year. For specialist costs, the main analyses suggested 
that the effect of BMI on specialist costs were smaller and 
less precise than the OLS estimate.

Previous studies assessing the effect of BMI on health-
care costs or utilization have found substantially higher 
costs and/or utilization when using the BMI of a relative 
[22–26] or when using genetic variants [27, 28] as instru-
ments in IV-analyses, compared with the costs found 
using traditional methods. There are several potential 
explanations for why our results do not follow the same 
pattern. The studies that have used biological relatives as 
instruments are not able to rule out environmental effects 
to the same extent as studies using individuals’ genetic 
variants as instruments. However, the use of biological 
relatives as instruments is also more powerful, as it may 
explain more of the variance in BMI compared with the 
use of genetic variants [68]. Nevertheless, this approach 
is limited because it omits individuals without children.

The two existing studies that have used genetic variants 
as instruments to assess the effect of BMI on healthcare 
costs both concluded that increased BMI leads to higher 
healthcare costs. One possible reason why our results 
do not follow the same trend is that there are differences 
between the data sources used. Compared with the first 
study, which was based on UK Biobank data [27], our 
sample had a larger response rate (54.1% in our data vs. 
5.45% in the UK-based study), and included a broader 
age span (ages 20 and above in our data vs. 99.5% of 
the sample being between 40 and 69 years of age in the 
UK-based study). The UK Biobank sample (n = 307,048) 
was larger than our sample (n = 60,728). The second 
study by [28], conducted in South West Germany, had 
a small sample size for the MR context (n = 2796), and 
the data on healthcare utilization used to estimate costs 
were self-reported in interviews. Self-reported health-
care utilization could lead to bias, especially if the num-
ber of encounters are high [20]. Although the results of 
our study are not directly comparable with the studies 
by Kurz and Laxy, 2020 [28] and Dixon et al., 2020 [27], 
there were some noteworthy discrepancies between our 
findings. In our study and in the study by Dixon et  al., 
2020 [27] the findings suggested that BMI had a smaller 
effect on hospital costs for females than for males. While 
the findings from the study by Kurz and Laxy, 2020 [28] 
suggests that BMI may increase healthcare costs more 

among females. In our study, and in the study by Dixon 
et  al., 2020 [27], the weighted median and modal esti-
mates were smaller than the IVW estimates, while the 
weighted median estimate was higher than the IVW esti-
mate in the study by Kurz and Laxy, 2020 [28] . Lastly, the 
MR-Egger estimate was smaller than the IVW estimate 
in the study by Dixon et  al., 2020 [27] and in the study 
by Kurz and Laxy, 2020 [28], while in our study the MR 
Egger estimate was higher than the IVW estimate. These 
discrepancies are potentially relevant for evaluating the 
reliability of MR-based estimates.

There are also some important limitations of studies 
using genetic variants as instruments. First, our under-
standing of BMI is limited, and BMI is trait heterogene-
ous (i.e. the genetic pathways leading to high BMI are 
heterogeneous). For instance, some people may have 
genetic variants that lead to an increased probability of 
poor diet, others may be predisposed to low metabolism 
or overeating. Ideally, we should seek to identify genetic 
variants that are associated with different underlying 
causes, and assess the individual impact of each of these 
on BMI and healthcare costs. Second, our power calcu-
lations show that we may have had insufficient power to 
detect small effect sizes, and this may explain why we did 
not find a significant effect of BMI on specialist costs (Fig. 
S1). This is an important problem, but at the same time, 
if obesity is associated with small costs, then the con-
sequences of a type II error are smaller. Third, because 
our costs were calculated based on the average costs for 
a particular type of contact, we have not accounted for 
differences in costs between BMI-categories for the same 
type of contact. Fourth, although we have done our best 
to test the validity IV-assumptions, we need an improved 
understanding of how each of the genetic variants work 
to fully understand the limitations of their use [69]. Fifth, 
it is possible that the health consequences of acquiring 
obesity due to a genetic predisposition, differ from the 
health consequences of obesity acquired through envi-
ronmental factors (e.g. social transmission). Lastly, since 
obesity is associated with early mortality [70], we may 
have captured a larger proportion of lifetime healthcare 
costs for persons with obesity, compared with those 
without. In addition to these limitations, our study lacked 
a sufficient sample size to conduct a wider range of sensi-
tivity analyses.

If our results are correct then there is a causal effect 
of increased BMI on GP costs. The effect of BMI on 
specialist costs is more uncertain, and may be smaller 
than has been estimated in previous studies. This 
result is not in line with the findings of the two previ-
ous studies that have used the MR methodology to 
look at specialist costs, and could be due to a lack of 
power. However, since the two past studies also have 
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important weaknesses future studies should consider 
applying the Mendelian randomization methodology to 
investigate whether similar findings are detected when 
using other data sources. We also found that the BMI-
related genetic variants that resulted in higher GP costs 
(Additional information, Fig. S4) were not the same as 
the ones driving specialist costs (Additional informa-
tion, Fig. S5). Moreover, we found that different genetic 
variants were drivers of healthcare costs for males and 
females, and for different types of specialist care. Lastly, 
when using the GRSs the results were sometimes dif-
ferent compared with when we used the variants with 
the strongest association with BMI (FTO and MC4R). 
These findings might suggest that there are differences 
in the supply and/or demand of healthcare services for 
individuals with different genetic variants or groups 
of genetic variants. This could be related to the many 
different potential pathways leading to obesity, and 
increased knowledge on this topic could be relevant for 
evaluations of prevention and treatment strategies.

The differing results found for males and females may 
also be explained by biological differences. National 
data on the number of sex-specific healthcare contacts 
made suggests that contact frequency is often higher for 
females than for males for diagnoses that are typically 
related to BMI (such as heart disease, diabetes, and cir-
culatory diseases) (Additional information, Fig. S8).

Since our study and all similar studies have differ-
ent sample-related limitations, it will be important 
to conduct more studies, ideally with nationally rep-
resentative data with a large sample size, and a broad 
age-span on participants. Future studies should also 
include as many newly discovered BMI-related genetic 
variants as possible. Since the initiation of the cur-
rent study two new GWAS have revealed additional 
BMI-related genetic variants [48, 71]. Finally, it could 
also be interesting to further investigate differences 
between the OLS and 2SLS estimates to try to uncover 
potential sources of simultaneity bias, for instance 
by comparing effect estimates for specific types of 
healthcare contact.

Conclusion
The effect of BMI on healthcare cost attenuated in the IV 
models, compared with the naïve OLS models. Previous 
studies may have overestimated the effects of obesity on 
GP and specialist costs.
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