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Abstract
Background Several studies have examined maternal health behavior during pregnancy and child outcomes. Negative control 
variables have been used to address unobserved confounding in such studies. This approach assumes that confounders affect 
the exposure and the negative control to the same degree. The current study introduces a novel latent variable approach that 
relaxes this assumption by accommodating repeated measures of maternal health behavior during pregnancy.
Methods Monte Carlo simulations were used to examine the performance of the latent variable approach. A real-life example 
is also provided, using data from the Norwegian Mother, Father, and Child Study (MoBa).
Results Simulations: Regular regression analyses without a negative control variable worked poorly in the presence of 
unobserved confounding. Including a negative control variable improved result substantially. The latent variable approach 
provided unbiased results in several situations where the other analysis models worked poorly. Real-life data: Maternal alcohol 
use in the first trimester was associated with increased ADHD symptoms in the child in the standard regression model. This 
association was not present in the latent variable approach.
Conclusion The current study showed that a latent variable approach with a negative control provided unbiased estimates 
of causal associations between repeated measures of maternal health behavior during pregnancy and child outcomes, even 
when the effect of the confounder differed in magnitude between the negative control and the exposures. The real-life exam-
ple showed that inferences from the latent variable approach were incompatible with those from the standard regression 
approach. Limitations of the approach are discussed.
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Introduction

For many years, researchers have examined the role of 
maternal behaviors during pregnancy for child outcomes. 
Some examples are the association between maternal medi-
cation use and congenital malformations in the child and the 
associations between maternal smoking during pregnancy 
and offspring neurodevelopmental disorders [1–3]. Such 
studies are important for gaining increased theoretical under-
standing of childhood disorders, as well as to inform health 

behavior advice to pregnant women. However, observed 
associations between maternal health behavior during preg-
nancy and child outcomes are not necessarily causal [4]. For 
example, children of women who smoke during pregnancy, 
have higher risk of developing ADHD than other children 
[1], but this does not necessarily imply that maternal smok-
ing during pregnancy harms the fetus’ neurodevelopment 
[5]. ADHD is heritable [6], and women with increased 
genetic liability of ADHD smoke more than other women 
[7]. Hence, the observed association may be confounded 
by transmission of genetic factors from mother to child [4]. 
Likewise, children born to women using acetaminophen dur-
ing pregnancy, have higher risk of developing ADHD [8, 9], 
but this might be due to pregnant women with high genetic 
liability of ADHD using more acetaminophen than other 
pregnant women [8, 10]. Thus, we need study designs that 
account for relevant confounding factors when studying the 
role of prenatal exposures in childhood disorders.
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Some confounders can be included in the research-
er’s analysis model, but many potential confounders are 
unknown, not measured in a study, or they may be unreli-
ably measured [4, 11]. For example, genetic risk of ADHD is 
often not measured in studies of associations between mater-
nal health behavior during pregnancy and child ADHD. Such 
factors could therefore act as unobserved confounders if they 
affect both maternal health behaviors and child ADHD. 
Other variables may be observed, but poorly measured. For 
example, maternal general health may be less than perfectly 
measured, and statistical adjustment may therefore be insuf-
ficient to control for the confounding effects of maternal 
general health on the associations between health behaviors 
and child disorders [12]. There is a need for designs that can 
adjust for unobserved confounding factors of associations 
between maternal health behaviors during pregnancy and 
outcomes in the child.

One way of dealing with unmeasured confounding factors 
is to use a variable that is supposed to share confounding 
factors with the exposure (e.g., maternal health behavior), 
but that is not causally related to the outcome (e.g., child 
ADHD). Such a variable is often referred to as a negative 
control variable [13–15]. In studies of maternal health 
behaviors and child outcomes, paternal health behaviors 
are often used as negative control variables [16–20] (see 
Brew et al. [21] for a more thorough discussion of the use of 
fathers as negative control exposures). One example may be 
a study of maternal alcohol consumption during pregnancy 
and ADHD in the child with paternal alcohol use during 
pregnancy as a negative control. The association between 
maternal alcohol use during pregnancy and child outcome 
may be causal (i.e., alcohol may have a negative effect on the 
fetus’ neurodevelopment), but it may also be confounded by 
other factors (e.g., women with high genetic risk of ADHD 
may drink more than other women). Paternal alcohol use 
is not expected to affect the fetus, but may be associated 
with the child outcome through the same confounding fac-
tors as maternal alcohol use is. The idea is then to compare 
the association between maternal alcohol use and the child 
outcome to the association between paternal alcohol use and 
the child outcome [15, 17, 22]. If maternal alcohol use is 
causally related to the child outcome, the association should 
be stronger than the association with paternal use. Under the 
assumption that the effect of the confounding factors is the 
same for the negative control and the exposure (i.e., the same 
for paternal and maternal alcohol consumption), the differ-
ence in the association between the exposure and outcome 
versus the negative control and the outcome can be thought 
of as the causal effect [15].

Equally strong effects from confounder on negative 
control and exposure is a strong assumption, as it is easy 
to imagine that confounding factors may be related to the 
exposure to different degrees than to the negative control 

[15]. For example, it may be more stigmatizing for a woman 
to drink alcohol or smoke cigarettes when pregnant than 
it is for a man to drink alcohol or smoke when his partner 
is pregnant. Women who drink and smoke during preg-
nancy may therefore be a more highly selected group of 
people than men who drink or smoke when their partners 
are pregnant. Hence, maternal health behavior during preg-
nancy may be differently related to confounding factors than 
paternal health behavior, and stronger associations between 
maternal than paternal health behaviors and child outcomes 
do not imply causality.

There is a need for analytic approaches that can estimate 
causal effects from maternal health behavior on child out-
comes even when the negative control variable is not related 
to the outcome to the same degree as the exposure is. In 
this paper we propose a structural equation model where 
confounding factors are explicitly modelled with latent 
variables. Uneven contributions from confounding are han-
dled with factor loadings relating the latent variable to the 
observed measures. The researcher can then examine the 
association between the exposure and the outcome, con-
trolled for the latent confounder.

Studies with repeated measures of an exposure across 
trimesters as well as at least one measure of a negative con-
trol, are ideal for using the latent variable approach. Three 
measures of the exposure (one for each trimester) and one 
measure of a negative control together contain sufficient 
information to estimate associations between exposure in 
each of the three trimesters and the outcome, controlled for 
the latent unobserved confounder without the assumption of 
equally strong confounding effects on the exposures as on 
the negative control variable.

Data simulation studies are often used for examining how 
different analytic approaches work under different conditions 
[23]. In such studies, the researcher defines the population, 
draws data from these populations and analyzes them in var-
ying ways. Because the researcher knows the true population 
values, the performance of different analytic approaches can 
be evaluated.

We use simulated data to examine associations between 
maternal health behavior during pregnancy and a child out-
come, using a latent variable approach where exposure (i.e., 
maternal health behavior) across trimesters and a negative 
control variable are used as indicators for a latent factor of 
unmeasured confounding. This will be done for three differ-
ent scenarios: Scenario 1: A situation where the associations 
between prenatal exposures and child outcome are entirely 
due to unmeasured confounding. Scenario 2: A situation 
where there is a mix of causality and confounding. Scenario 
3: A situation where the associations are causal, without any 
confounding. To test the generalizability of findings, we will 
examine different versions of each of those three scenarios, 
as described in the methods section.
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All results will be compared to estimates from regres-
sion analyses without a latent factor or a negative control. 
This will be done because such models are often used when 
examining associations between prenatal exposure and 
child outcomes [24–28]. The results from the latent vari-
able approach will also be compared to results from regres-
sion analyses with a negative control variable, but without 
a latent factor.

We will also use real-life data to illustrate the latent varia-
ble approach by examining the association between maternal 
alcohol consumption in pregnancy and ADHD symptoms in 
the child at eight years of age, using pre-pregnancy alcohol 
consumption as a negative control. This is a relevant exam-
ple because ADHD is one of the most prevalent childhood 
psychiatric disorders, and empirical results as well as theo-
retical models have suggested maternal alcohol use during 
pregnancy as a risk factor for development of ADHD [29, 
30]. Also, inferences are usually based on observational 
study designs and there is a considerable concern that any 
association may reflect unobserved confounding [29].

Methods

Model formulation

The current approach is appropriate when the main objective 
is to study the effect of a prenatal exposure on an outcome 
variable, in the presence of unobserved confounding. We 
formulate this as a structural equation model, which models 
linear relations among observed and latent variables [31]. 
We assume that an additional negative control variable is 
available, influenced by the same unobserved confounders as 
the exposure and outcome variable, but otherwise unrelated 
to both the exposure and outcome variables.

To introduce the approach, we first discuss a situation 
where a single exposure measure is available, before extend-
ing the formulation to situations where repeated measures 
of the exposure are available (for example trimester specific 
measures), allowing some assumption of the first formula-
tion to be relaxed.

Single exposure measure

In the simplest setting, we are modelling an outcome vari-
able yj , an exposure variable xj and a negative control vari-
able cj observed on individual j . The joint model is

yj = �y + �xj + �y�j + �yj,

xj = �x + �j + �xj,

Here, �y , �x and �c are intercepts. � is the coefficient of 
main interest, representing the effect of the exposure on the 
outcome. �j is a latent variable representing shared unob-
served confounding affecting all variables, assumed to be 
normally distributed with mean 0 and variance � , which 
we denote as �j ∼ N(0,�) . �y is a factor loading allowing 
the latent variable to have a different impact on the out-
come variable relative to the exposure and negative control 
variable. �yj , �xj and �cj are independent error terms distrib-
uted as �yj ∼ N

(

0, �y
)

 , �xj ∼ N
(

0, �x
)

 and �cj ∼ N
(

0, �c
)

 , 
respectively.

A key element of the joint model is that both the outcome 
and exposure is influenced by the same variable �j , so that 
the effect of the exposure on the outcome is estimated hold-
ing shared unobserved confounding constant. Thus, valid 
inferences on � can be obtained in the presence of confound-
ing. The purpose of including cj in the model is to simultane-
ously identify the variance of the shared confounding � and 
the effect of interest �.

The choice of estimating the factor loading for the out-
come variable but not the exposure and control variable is 
arbitrarily, but necessary for identification. Other solutions 
are possible, but this appear to be a reasonable choice for 
many situations because the exposure and control variable 
will often be on the same scale, but the outcome variable 
may not. For example, when the exposure is a maternal preg-
nancy measure, and the negative control is a pre-pregnancy 
or paternal measure.

Trimester specific exposure measures

Although the above formulation can be helpful in studying 
relationships in the presence of unobserved confounding, it 
relies on some rather strict assumptions regarding the struc-
ture of the unobserved confounding. Specifically, we must 
be willing to assume that the unobserved confounding is 
equally influential with respect to the exposure and negative 
control variable.

When the exposure has been measured in each trimester, 
we can relax this assumption by introducing factor loadings 
also in the model for the exposure variables. The model for 
the negative control variable is the same, but the model for 
the outcome and exposure measure at trimester t is now

cj = �c + �j + �cj.

yj = �y +

3
∑

t=1

�txtj + �y�j + �yj,

xtj = �xt + �xt�j + �xtj.
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Compared to the formulation for a single exposure meas-
ure, the outcome is now dependent on the exposure at each 
trimester t with trimester specific coefficients �t . The expo-
sure measure at trimester t  now has a trimester specific 
intercept �xt and is related to the latent confounding variable 
through the factor loading �xt , permitting the strength of con-
founding to differ across trimesters. The trimester specific 
error term is assumed to be independent across trimesters 
and distributed as �xtj ∼ N

(

0, �xt
)

.
The substantial difference from the first formulation is the 

introduction of trimester specific coefficients from the expo-
sure to the outcome, and factor loadings from the latent con-
founding variable to the exposure. This allows the researcher 
to investigate trimester specific effects of the exposure while 
controlling for shared confounding that may relate to the 
negative control, exposure, and outcome measure with dif-
ferent strength. See Fig. 1 for an illustration of the latent 
variable model.

For some exposures, it may be of importance to also 
consider autoregressive (AR) effects of the exposure meas-
ures. For example, alcohol intake at previous occasions 
may lead to higher intakes of alcohol at later occasions. 
Such dependence is often referred to as state dependence, 
in contrast to unobserved heterogeneity (which we refer 
to as unobserved confounding) [32]. We consider a first 
order AR process where the exposure depends only on 

the previous trimester. If the negative control variable 
is a measure of the same behavior as the exposure and 
obtained from the same individual, for example maternal 
alcohol use before pregnancy, it is relevant to also include 
the negative control variable in the AR structure. The 
model for the exposure variables can then be extended as

Here, wt−1,j represent the negative control or the expo-
sure measure from the previous trimester so that wt−1,j is 
equal to cj if t = 1 and xt−1,j otherwise. �t represents the 
regression coefficient on the previous occasion.

With simultaneous modeling of unobserved confound-
ing and AR effects, the model is not identified without 
imposing constraints. Although more restrictive than 
strictly necessary, we suggest that a reasonable strategy is 
to constrain all factor loadings on the exposures to equal-
ity ( �x1 = �x2 = �x3) and constrain the AR coefficients on 
previous exposure to equality ( �2 = �3 ). However, other 
choices could be made depending on the structure of spe-
cific problems. If the negative control variable is unrelated 
to the AR process, for example paternal alcohol use dur-
ing pregnancy, �1 can be set to zero, which is sufficient to 
identify the model. Figure 2 shows a path diagram of the 
modified model including an autoregressive structure.

Further details on the structural equation models are 
provided in the supplement.

xtj = �xt + �xt�j + �twt−1,j + �xtj.

Fig. 1  Illustration of the latent variable model. The latent confounder 
is depicted by the ellipse, and observed variables are depicted by rec-
tangles Notes: c = negative control,  ×1,  ×2,  ×3 = exposure in trimes-

ter 1, 2, and 3, respectively. y = child outcome. η = unobserved latent 
variable representing confounding, ec, e1, e2, e3, and ey are residuals
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Simulation study

Scenarios—varying the degree to which observed 
associations were confounded versus causal

Data were simulated for three scenarios where the associa-
tions between exposures and outcome were: (1) totally con-
founded, (2) a mix of confounding and causality, and (3) 
causal only. For example, in the scenario with causal effects 
only, the effect from the unobserved confounder on the out-
come was set to zero, while the effects from the exposures 
to the outcome were set to zero in the situation where these 
associations were totally confounded. See Fig. 3 for an illus-
tration of the three different scenarios.

Different versions of the three scenarios—varying 
the degree to which the unobserved confounder affected 
the negative control and the exposures differently

Each of the three scenarios (confounding only, mix of cau-
sality and confounding, and causal effects only) were simu-
lated in several different versions. See Fig. 3 for details. In 
Version 1 of each of the three scenarios described above, the 
effects from the confounder were the same on the exposures 
in all trimesters and also on the negative control. Hence, the 
assumption of equal effects of the confounder on the nega-
tive control and the exposures was met. In Version 2, the 
effect of the confounding factor was different in magnitude 

for the negative control than for the exposures, and the equal-
ity assumption was thus not met. In Version 3, the effect of 
the confounder on the exposure differed between trimesters, 
and the assumption of equal effects of the confounder on 
the negative control and the exposure was violated to differ-
ent degrees for the three exposures. In Version 4, different 
latent variables affected the negative control and the three 
exposures (see Fig. 4). This violates a core assumption of 
the current latent variable model—that the negative control 
and the exposures are affected by the same unobserved con-
founder. Hence, the model was expected to work poorly in 
this situation.

Data generation

Data were generated in R version 3.6.1 33. To avoid results 
being heavily affected by random variation in the simulated 
data, a Monte Carlo approach was used, where 500 random 
samples were generated for each of the 12 conditions (three 
scenarios, with four versions of each), each sample with 
n = 5000. Results are presented as averages over the 500 
samples. Standard deviations (SD) of the estimates over the 
500 samples were also calculated.

Exposure in each of the three trimesters, a negative 
control and a child outcome were generated as observed 
variables a researcher can analyze. These variables were 
generated as normally distributed, with a mean of zero 

Fig. 2  Illustration of the modified latent variable model. Notes: c = negative control, ×1, ×2, ×3 = exposure in trimester 1, 2, and 3, respectively. 
y = child outcome. η = unobserved latent variable representing confounding, ec, e1, e2, e3, and ey are residuals



 K. Gustavson et al.

1 3

and a total variance of 1. The outcome was generated as a 
function of the exposures and the unobserved confounder.

The unobserved confounder was generated as a latent 
factor, with factor loadings to the observed study vari-
ables. This latent confounder had a variance of 0.1. This 
value was chosen to enable simulating confounding effects 
in scenario 1 to be of the same magnitude as the causal 
effects in scenario 3, and at the same time allow model-
ling the factor loading from the latent confounder on the 
negative control to be 1 in all scenarios and versions, and 
also allowing the factor loadings from the confounder on 
the exposures to be higher than one in versions 2 and 3.

In Version 4, different unobserved confounders were 
modelled, each with a variance of 0.1, and with regression 
paths of b = 0.3 between them. See Fig. 4 for details.

Analyses

Models with latent variables were analyzed in Mplus version 
8.2 34, while models without latent variables were analyzed 
in R. Latent variable model: The measures of the exposure 
in the three trimesters, as well as the negative control were 
used as indicators for a latent variable. The factor loading to 
the negative control was fixed to 1.00, with the other factor 

Fig. 3  Data generating process for different scenarios Notes: The 
different versions represent the degree to which the unobserved con-
founder had equal versus unequal effects on negative control and 
exposures.  ×1 = exposure in trimester 1,  ×2 = exposure in trimester 
2,  ×3 = exposure in trimester 3, c = negative control, η = unobserved 
confounder. Residuals are not shown for simplicity. N = 5000 and 

number of samples = 500 for all situations. ψ = variance unobserved 
confounder. This variance was defined so that the confounding in 
Scenario 1 in Versions 1 and 2 was equal in magnitude to the causal 
effects in Scenario 3. Bold font in Versions 2 and 3 indicates condi-
tions that were different from Version 1
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Fig. 4  Data generating process for different scenarios with different 
unobserved confounders for the negative control and the three expo-
sures. Notes:  ×1 = exposure in trimester 1,  ×2 = exposure in trimes-
ter 2,  ×3 = exposure in trimester 3, c = negative control, η0, η1, η2, 

η3 = unobserved confounders. Residuals are not shown for simplicity. 
N = 5000 and number of samples = 500 for all situations. ψ = (resid-
ual) variance of unobserved confounders. Bold font indicates condi-
tions that were different from Version 1
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loadings and the variance of the latent factor freely esti-
mated. The outcome was then regressed on the exposures in 
the three trimesters, controlled for the latent variable, using 
the maximum likelihood estimator. See Fig. 1 for an illustra-
tion of the analysis model.

Models without a latent variable: Regular linear regres-
sion models were run for analyses without a latent variable. 
The outcome was regressed on each of the three exposures 
in separate models for the unadjusted analyses, and on the 
three exposures in the same model for the adjusted analyses. 
For the analyses with the negative control, the outcome was 
regressed on the three exposures and the negative control in 
the same model. The estimate of the causal effect of an expo-
sure on the outcome was calculated in the following way in 
this latter model: The estimate of the outcome regressed on 
an exposure minus the estimate of the outcome regressed on 
the negative control.

A researcher will not know if associations are confounded 
or causal. Hence, the same analysis model was run on data 
from all the three scenarios (i.e., only confounding, a mix 
of causality and confounding, and causal associations only). 
This was done to examine the degree to which the different 
analytical approaches provided biased results under differ-
ent levels of unobserved confounding. Analyses were also 
performed in the same way for all the four versions (i.e., dif-
ferent degrees of violation of the assumption of equal effects 
from confounder on negative control and exposures) of each 
of the three scenarios.

Expanding the analysis approach—including first‑order AR 
effects

As discussed above, AR effects of the negative control and 
the exposure may be important in several situations. The 
current analysis approach can be modified to include first 
order AR effects (see Fig. 2). Data were generated from sev-
eral different populations with first order AR effects, and 
then analyzed with this modified model. See the first and 
second columns in Fig. 5 for details of these populations. 
The first column describes a population where the factor 
loadings from the unobserved confounder differs between 
the negative control and the exposures (Version 5). This is 
in accordance with the modified analysis approach, and the 
model is expected to work properly. In the second column, 
the factor loadings also differ between the three exposures 
(Version 6). As described above, equality constraints were 
imposed on these three factor loadings in the modified analy-
sis model to allow estimation of the AR paths. Hence, the 
model is expected to work poorly in this situation. The first 
column of Fig. 6 shows data generated form a population 
with different unmeasured confounders affecting the nega-
tive control and the three exposures, in addition to first order 
AR effects (Version 9). This violates the assumption of the 

current analysis model that the same confounder affects the 
negative control and the exposure, and the model is expected 
to break down.

Limitations of the current analysis approach—complex AR 
effects

Above, we introduced a modified version of the analysis 
model that incorporated first order AR effects. A more com-
plex AR structure may be present in some situations. For 
example, the negative control may affect all the three expo-
sures directly, and the first exposure may affect not only the 
second, but also the third exposure. It is not possible to esti-
mate all these paths in addition to separate factor loadings 
for the negative control and the exposures, with information 
from five variables (a negative control, three exposures, and 
an outcome). Hence, the model was not modified to try to 
handle this situation. Nevertheless, to illustrate the limita-
tions of the current analysis approach, data were generated 
from several populations with such complex AR structures. 
See columns 3 and 4 in Fig. 5 and the second column in 
Fig. 6 for details of these populations. As the figures show, 
factor loadings differed between the negative control and the 
exposures in the first of these populations (Version 7—col-
umn 3 of Fig. 5), between negative control and exposures 
as well as between the three exposures (Version 8—column 
4 of Fig. 5), and different unmeasured confounders affected 
the negative control and the three exposures (Version 10—
column 2 of Fig. 6). The modified analysis model (Fig. 2), 
which was used on these data, was expected to perform 
poorly in all three situations.

Real‑life study

Sample

Data from the Norwegian Mother, Father, and Child 
Cohort study (MoBa) was used to illustrate the latent vari-
able approach with real data. The MoBa is a population-
based pregnancy cohort study conducted by the Norwe-
gian Institute of Public Health with recruitment from 1999 
to 2008 [35, 36]. Pregnant women from all over Norway 
were recruited when they attended their routine ultrasound 
examination at gestational week 17. MoBa includes more 
than 114 000 children (born to 41% of the invited mothers). 
Mothers responded to questionnaires in gestational weeks 17 
and 30, and to several questionnaires after the child was born 
(at 6 months after birth, 36 months, 5 years, and 8 years). 
The current study will use information from the question-
naires at gestational week 30 as well as 6 months after birth 
for information about maternal alcohol use before pregnancy 
and in the three trimesters, and from the questionnaire when 
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the children were 8 years old for information about chil-
dren’s ADHD symptoms.

Measures

Outcome: Mothers reported on child ADHD symptoms at 
8 years of age, using the ADHD Rating Scale [37], includ-
ing 18 items based on the diagnostic criteria for ADHD 
in the Diagnostic and Statistical Manual of Diseases—4th 

revision (DSM-IV) [38]. Examples of items were: “Fails 
to give close attention to details” and “Has difficulty 
awaiting turn”. Mothers rated each item on a scale from 1 
(“never/rarely”) to 4 (“very often”). A sum score was cre-
ated of the 18 items, and this score was then standardized 
(mean = zero and standard deviation = 1), to increase inter-
pretability of findings. The average correlation between 
the items was 0.35, and Cronbach’s alpha reliability esti-
mate was 0.91.

Fig. 5  Data generating process for different scenarios with AR effects 
Notes: AR effects = autoregressive effects between the negative con-
trol and the exposures. The different versions represent the degree to 
which the unobserved confounder had equal versus unequal effects on 
negative control and exposures, as well as first order versus complex 
AR effects. ×1 = exposure in trimester 1,  ×2 = exposure in trimester 

2,  ×3 = exposure in trimester 3, c = negative control, η = unobserved 
confounder. Residuals are not shown for simplicity. N = 5000 and 
number of samples = 500 for all situations. ψ = variance unobserved 
confounder. Total variance of observed exposures = 1.3. Bold font 
indicates conditions that were different from Version 1
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Exposures and negative control: Maternal alcohol con-
sumption during pregnancy was the exposure, while mater-
nal consumption before pregnancy was the negative control. 
Maternal pre-pregnancy drinking may affect drinking dur-
ing pregnancy. This negative control variable was thus rel-
evant for illustrating potential differences between analysis 
models with versus without AR paths. Mothers reported on 
how often they consumed alcohol before pregnancy and in 

the first and second trimester in the questionnaire at gesta-
tional week 30. Alcohol consumption in the third trimes-
ter was reported in the questionnaire 6 months after birth. 
The response categories were: “Never”, “less than once 
a month”, “roughly 1–3 times a month”, “roughly once a 
week”, “roughly 2–3 times a week”, “roughly 4–5 times a 
week”, and “roughly 6–7 times a week”. Again, the variables 
were standardized to ease interpretation of results.

Fig. 6  Data generating process for different scenarios with AR effects 
and different unobserved confounders for the negative control and the 
three exposures. Notes: AR effects = autoregressive effects between 
the negative control and the exposures. × 1 = exposure in trimester 
1,  × 2 = exposure in trimester 2, × 3 = exposure in trimester 3, c = neg-

ative control, η0, η1, η2, η3 = unobserved confounders. Residuals are 
not shown for simplicity. N = 5000 and number of samples = 500 for 
all situations. ψ = (residual) variance of unobserved confounders. 
Total variance of observed exposures = 1.3. Bold font indicates condi-
tions that were different from Version 1
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Analyses

The MoBa data were analyzed with three models: We first 
fitted a linear regression model including trimester specific 
maternal alcohol use levels as explanatory variables for 
ADHD symptoms. We then fitted the latent variable model 
where we also include maternal pre-pregnancy alcohol use 
as a negative control variable. We also fitted a latent variable 
model where we included an AR structure on the alcohol 
measures. In all models, we included sex as a covariate as 
ADHD symptom levels are generally higher in boys than 
girls.

Results

Simulation study

The rows in Fig. 7 show results from the three different sce-
narios (i.e., only confounded associations between exposures 
and outcome, a mix of confounding and causality, and only 
causal associations). The columns in Fig. 7 show results 
from four different versions of each of these scenarios (i.e., 
different levels of violation of the assumption of equal 
effects from confounder on negative control and exposures).

In all the 12 panels of Fig. 7, results from the latent vari-
able approach with a negative control are shown with a pur-
ple circle. Results from unadjusted and adjusted regression 
analyses without a negative control variable are shown with 
a red square and a green triangle, respectively. Results from 
analyses with a negative control, but without a latent vari-
able are shown with a turquoise diamond. The horizontal 
lines show variation of the estimates across the 500 sam-
ples (± 1.96*SD). The x-axis shows magnitude of bias (true 
value—estimated value), and the vertical lines mark the 
point of zero bias. The further away from the vertical line 
the point estimate is, the more bias.

Figure 7 shows unbiased estimates from the latent factor 
model with a negative control for data from populations that 
were in accordance with the analysis model. This is true for 
all scenarios (confounded associations only, a mix of causal 
and confounded associations, and causal associations only). 
Hence, estimates are unbiased when the magnitude of the 
effect from the unobserved confounder is the same for the 
negative control and the exposures (Version 1), and when 
the effect is different in magnitude for negative control ver-
sus exposures (Version 2), as well as when the effect differs 
between the three exposures (Version 3). As expected, the 
model worked poorly when data came from a population 
where different confounders affected the negative control 
and the exposures (Version 4).

Fig. 7  Bias from analyses of data from different populations. Notes: 
The figure shows average estimates and ± 1.96*SD of the estimates 
over the 500 draws. λc, λx1, λx2, λx3 = factor loadings from con-
founder to negative control, exposure in first, second and third tri-
mester, respectively. Version 1: Factor loadings from unobserved con-
founder to the three trimesters and to the negative control are equally 
strong (all λ = 1.0) in the population. Version 2: Factor loadings are 
weaker to negative control (λ = 1.0) than to exposures (λ = 2.0) in the 

population. Version 3: Factor loadings are weaker to negative con-
trol (λ = 1.0) than to exposures (λ = 1.3, 1.5, and 2.0, respectively) in 
the population. Version 4: Different confounders affect the negative 
control and each of the three exposures. Analyses did not converge/
resulted in unidentified models for a large proportion of the 500 ran-
dom data sets in the latter version. Autoregressive paths are zero in 
all versions
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Figure 7 shows, as expected, that standard adjusted 
regression models work very well when the associations 
between exposures and outcome are entirely causal in 
nature. Unadjusted regression models also work fairly well 
in these circumstances. However, when there is confound-
ing from an unobserved factor, the association parameters 
are overestimated in these models, as expected. The mod-
els with a negative control variable without a latent vari-
able provides unbiased results when there is no confound-
ing. As expected, the model provides unbiased results 
despite confounding when the effects of the confounder are 
equally strong on the negative control as on the exposures 
(Version 1). When the effect of the confounder is higher in 
magnitude on the exposures than on the negative control 
(Version 2), the estimates from this model are somewhat 
biased, but less so than the analyses without the nega-
tive control. When the effects of the confounder differed 
between the three exposures (Version 3), results were most 
heavily biased for the exposures with the highest factor 
loadings from the confounder. Results were biased when 
different confounders affected the negative control and the 
exposures (Version 4).

Estimating first‑order AR effects

As described in the methods section, populations were then 
modelled with first order AR effects between the nega-
tive control and exposures. The modified analysis model 
described above was used (see Fig. 2), and results are pre-
sented in columns 1, and 2 of Fig. 8 and in the first col-
umn of Fig. 9. As described above, the modified analysis 
model contained equality constraints on the factor loadings 
of the three exposures, and the model was thus expected to 
handle the first of these three situations well (Version 5—
Fig. 8). The results were unbiased in this version, while the 
other analysis approaches (unadjusted and adjusted regres-
sion as well as a negative control approach without a latent 
variable) produced biased results in the presence of con-
founding. When factor loadings differed between the three 
exposures in the population (Version 6—Fig. 8), and when 
different confounders affected the negative control and the 
exposures (Version 9—Fig. 9), all the analysis approaches 
produced biased results. Again, results were most heavily 
biased for exposures with the highest factor loadings from 
the confounder.

Fig. 8  Bias from modified analysis model including AR effects Notes: 
AR effects = autoregressive effects between the negative control and 
the exposures. The figure shows average estimates and ± 1.96*SD 
of the estimates over the 500 draws. λc, λx1, λx2, λx3 = factor load-
ings from confounder to negative control, exposure in first, sec-
ond and third trimester, respectively. Version 5: Factor loadings are 
weaker to negative control (λ = 1.0) than to exposures in the popula-
tion (λ = 2.0), first order AR effects. Version 6: Factor loadings are 

weaker to negative control (λ = 1.0) than to exposures in the popula-
tion (λ = 1.3, 1.5, and 2.0, respectively), first-order AR effects. Ver-
sion 7: Factor loadings are weaker to negative control (λ = 1.0) than to 
exposures in the population (λ = 2.0), complex AR effects. Version 8: 
Factor loadings are weaker to negative control (λ = 1.0) than to expo-
sures in the population (λ = 1.3, 1.5, and 2.0, respectively), complex 
AR effects
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Complex AR effects

Analyses were then performed on data from populations 
where there were complex AR structures between the nega-
tive control and exposures, as discussed in the methods sec-
tion. Results are shown in column 3 and 4 of Fig. 8 (Versions 
7 and 8), and column 2 of Fig. 9 (Version 10). All analysis 
models produced biased results in the presence of confound-
ing in these versions.

Real life study

Table 1 displays correlations between maternal alcohol use 
before and during pregnancy. All correlations are positive, 
indicating some stability in levels of alcohol use across all 
measurements. However, measurements obtained closer in 
time appear more strongly related.

Parameter estimates from the regression model as well 
as the latent variable model are presented in Table 2. The 
results of the regression model indicate that there is a small 

effect of alcohol use in the first trimester, but not the oth-
ers. This is the only effect that is distinguishable from zero. 
With this estimate, children of the same sex with mothers 
who differ by a standard deviation in reported alcohol use, is 
expected to differ 0.04 standard deviations in ADHD levels.

The results from the latent variable model did not suggest 
an effect of maternal alcohol use in the first trimester. In 
contrast, we found a negative effect associated with alcohol 
use in the second and third trimester (see Table 2). Thus, 
holding unobserved variables that are shared between the 
alcohol measures and ADHD symptoms constant, the results 
indicate that children of mothers with higher levels of alco-
hol use during the second and third trimester have lower 
ADHD symptom levels. Results were very similar regardless 
of whether AR paths were modelled or not.

Discussion

We proposed a novel latent variable model, including a neg-
ative control variable, for examining maternal health behav-
ior in different trimesters as risk factors for child outcomes. 
The main aim of developing this model was to relax the 
assumption of equally strong effects from the unmeasured 
confounder on the negative control and the exposures. Using 
simulated data, we showed that the model produced unbi-
ased results in scenarios where the true associations between 
the exposures and the outcome were due to unmeasured con-
founding factors, when the associations were truly causal, 

Fig. 9  Bias from modified analysis model including AR effects, 
part 2 Notes: AR effects = autoregressive effects between the nega-
tive control and the exposures. The figure shows average estimates 
and ± 1.96*SD of the estimates over the 500 draws. Version 9: Dif-
ferent confounders affect the negative control and each of the three 

exposures, first order AR effects. Version 10: Different confounders 
affect the negative control and each of the three exposures, complex 
AR effects. Analyses did not converge/resulted in unidentified models 
for a large proportion of the 500 random data sets in both versions

Table 1  Correlations between levels of alcohol use across measure-
ments

Pre-pregnancy Trimester 1 Trimester 2

Trimester 1 0.40
Trimester 2 0.30 0.47
Trimester 3 0.31 0.36 0.68
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and when there was a mix of causality and confounding. The 
results also showed that the latent variable model produced 
unbiased results even when the effect of the unmeasured 
confounder differed in magnitude for the negative control 
and the exposures. Analyses including a negative control, 
but not a latent variable, produced biased results when the 
magnitude of the effects from an unobserved confounder 
was higher on the exposures than on the negative control, 
but less biased than results from analyses without a nega-
tive control. We also analyzed data from populations that 
violated the assumptions of the model, thus illustrating the 
model’s limitations.

Observational studies of maternal health behavior during 
pregnancy and outcomes in the child have challenges regard-
ing drawing conclusions about causal effects on the fetus’ 
development [4, 17]. Many factors can act as confounders 
of such associations. Even if researchers include several 
measured potential confounders in their studies, unmeas-
ured confounders, or poorly measured confounders, may be 
important. Some studies use negative control variables to 
mitigate this problem. A stronger association between the 
exposure and the outcome than between the negative control 
and the outcome is then interpreted as evidence of a causal 

effect of the exposure on the outcome [15, 20]. However, 
using a negative control variable is not equivalent to control-
ling for unmeasured confounders, as confounders may affect 
the negative control and the exposures to different degrees. 
If the unobserved confounder is more strongly related to the 
exposure than to the negative control, the exposure-outcome 
association may be stronger than the negative control-out-
come association even when there is no true causal effect.

The current simulation study showed that comparing the 
magnitude of the association between negative control and 
outcome versus exposure and outcome, reduced bias in esti-
mates, compared to not using a negative control variable. 
When the effect of the confounder was equally strong for the 
negative control and the exposures, this method produced 
unbiased results, in accordance with [15]. This approach has 
been used in previous studies [20, 39]. However, when the 
confounder was more strongly related to the exposures than 
to the negative control, this model without a latent variable 
lead to overestimation of causal effects from the exposures 
to the outcome. However, this model showed less biased 
results than the models without a negative control variable.

The current simulation study examined the performance 
of a novel model where a negative control variable was used 

Table 2  Estimates from 
alternative models for ADHD 
and alcohol use

AR First order autoregressive effects between negative control and exposures. SE Standard error

Parameter Regression model Latent variable model Latent variable 
model + AR

Estimate SE Estimate SE Estimate SE

Intercepts
�
y
[ADHD] 0.170 0.008 0.170 0.008 0.170 0.008

Regression coefficients
�
1
[trimester 1] 0.041 0.007  − 0.011 0.014  − 0.016 0.015

�
2
[trimester 2]  − 0.007 0.008  − 0.181 0.041  − 0.103 0.024

�
3
[trimester 3] 0.007 0.008  − 0.114 0.029  − 0.088 0.023

�
4
[sex]  − 0.344 0.012  − 0.345 0.012  − 0.345 0.012

�
1
[pre-pregnancy]  − 0.062 0.013

�
2
[trimester 1] 0.053 0.004

�
3
[trimester 2] 0.053 0.004

Factor loadings
�
y
[ADHD] 0.808 0.187 0.477 0.114

�
x1

[trimester 1] 1.306 0.023 1.452 0.042
�
x2

[trimester 2] 2.072 0.034 1.452 0.042
�
x3

[trimester 3] 1.915 0.030 1.452 0.042
�
c
[pre-pregnancy] 1 1

Variances
�
y
[ADHD] 0.968 0.008 0.949 0.012 0.956 0.010

�
x1

[trimester 1] 0.715 0.007 0.678 0.007
�
x2

[trimester 2] 0.282 0.006 0.378 0.005
�
x3

[trimester 3] 0.387 0.006 0.410 0.005
�
c
[pre-pregnancy] 0.833 0.007 0.799 0.008

�[latent variable] 0.167 0.005 0.244 0.015
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within a latent variable approach. The unmeasured con-
founder was modelled as a latent variable. The effects of 
the unobserved confounder were allowed to differ between 
the negative control and the exposures. The results showed 
that this model produced unbiased results in several different 
scenarios. First, the model produced unbiased results when 
the true associations between the exposures in the three tri-
mesters and the outcome were entirely due to confounding. 
When the true associations between the three exposures and 
the outcome were causal, the model also estimated unbi-
ased effects. When there was a mixture of causality and con-
founding, the model also produced unbiased results. Further, 
we tested the performance of the model when the effect of 
the unmeasured confounder was equal versus different in 
magnitude on the negative control and the three exposures. 
All these estimates were unbiased. Hence, the current results 
demonstrate that combining a latent variable approach and 
a negative control variable can produce unbiased estimates 
of causal associations between maternal health behaviors 
during pregnancy measured in each trimester, and outcomes 
in the child.

The main advantage of the model presented here, is the 
relaxation of the assumption generally held when using 
negative control variables that the effects of confounders 
are equal in magnitude for the negative control and the 
exposures. As discussed in the introduction, it is easy to 
imagine situations where this assumption does not hold. 
This may be particularly relevant for studies examining 
maternal health behavior during pregnancy. Because preg-
nant women receive a lot of advice on healthy behavior, it 
seems a stretch to assume that confounding factors have the 
same effect on health behavior during pregnancy as before or 
after pregnancy or as on the same behaviors in the women’s 
partners. Given easy access to information and advice on 
healthy lifestyle during pregnancy (e.g., not smoking, not 
using alcohol, eating healthy etc.), women with an unhealthy 
lifestyle during pregnancy could be a more selected group 
than women with the same lifestyle when not pregnant and 
more selected than men with the same unhealthy lifestyle. 
Hence, the current approach seems particularly well suited 
for studies of maternal health behaviors during pregnancy 
and child outcomes, with information about pre- or post- 
pregnancy health behavior or about the women’s partner’s 
health behavior. Nevertheless, the current approach is not a 
guarantee for estimating causality correctly. Exposures and 
negative controls may differ in other ways than just in the 
magnitude of the effects from unmeasured confounding fac-
tors. For example, exposures may be affected by confound-
ers totally unrelated to the negative control. The current 
approach does not account for that. For example, women 
in Norway are advised to use folic acid supplements when 
planning to get pregnant and during pregnancy. Men are not 
advised to do this, and maternal folic acid supplement use 

before planning to get pregnant, after pregnancy, or men’s 
use of such supplements, may therefore be affected by dif-
ferent factors than women’s use during pregnancy. The cur-
rent results showed that the novel analysis approach worked 
poorly when different unobserved confounders affected 
the negative control and the three exposure variables, even 
when there were associations between these confounders. 
It is therefore important that researchers have knowledge 
about the health behaviors they study and the variables they 
consider using as negative controls before entering them into 
the model from the current study.

A main limitation of the current latent variable approach 
is the restricted number of parameters that can be estimated 
with information from five observed variables (a negative 
control, three exposures, and an outcome). This implies 
that not all potential associations between variables can 
be freely estimated. Different constraints can be imposed 
on the model, depending on the exposures under study. In 
our main analysis model, we did not estimate AR effects 
between the negative control and the exposures. Such effects 
may be important for some exposures, and the model can 
then be modified to include first order AR effects. The cost 
of this is that other constraints need to be imposed, and we 
chose to set the three factor loadings from the unobserved 
confounder to be equal for the three exposures in the modi-
fied model. This worked well when factor loadings differed 
between the negative control and the exposures. Hence, 
the modified analysis model worked well even when the 
assumption of standard negative control analyses was vio-
lated. However, the model broke down when the unobserved 
confounder affected the three exposures to different degrees. 
This emphasizes that the researcher needs to have knowl-
edge about the exposures and negative control under study 
to make informed decisions on what parameters are most 
important to estimate. As discussed above, the AR path from 
the negative control to the exposure can be set to zero when 
using a paternal negative control variable, thus allowing esti-
mation of other parameters.

When the latent variable model worked poorly, the other 
analysis models (unadjusted and adjusted regression models 
and the negative control analyses without the latent variable) 
worked equally poorly or worse. The latent variable model 
showed higher variance in estimates across the 500 random 
data sets compared to the other analysis models. However, 
the average estimates over the 500 data sets from the other 
analysis models tended to be close to the most biased results 
from the latent variable approach.

There may be several other situations in which the 
assumptions of the current approach are violated in differ-
ent ways. First, the current approach builds on a SEM frame-
work for analyzing linear relationships between observed 
and latent variables. In situations with non-linear associa-
tions, the current approach should not be expected to work 
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well. Another example of limitations of the current approach 
is situations where there is an interaction effect between 
the unmeasured confounder and the exposure. The current 
analysis model does not account for such interaction effects.

Data from the Norwegian mother, father, and child study 
were analyzed as an example. In the standard regression 
model, there was a positive association between maternal 
alcohol consumption in the first trimester and ADHD symp-
toms in the child at eight years of age. The finding of a 
small positive effect is consistent with prior reports [29]. 
In the latent variable model with the negative control (i.e., 
maternal drinking before pregnancy) this association was 
not present. These results may indicate that the observed 
association between maternal drinking in the first trimester 
and ADHD in the child was due to confounding factors. 
The results also showed that in the latent variable model, 
there were negative associations between maternal drinking 
in the second and third trimester and ADHD symptoms in 
the child, which were not present in the standard regression 
model. Hence, these associations first appeared after remov-
ing the effects of confounding shared between the negative 
control and the exposures. These negative associations could 
of course imply that drinking late in pregnancy is protec-
tive against ADHD in the child. However, more likely these 
associations may themselves be biased—due to unmeasured 
confounding operating in opposite directions on alcohol con-
sumption and ADHD, or due to selective participation in 
the MoBa [40, 41]. As discussed above, the latent variable 
model does not mitigate bias due to factors that are qualita-
tively different between the negative control and exposures, 
even if it works for confounders that differ in magnitude for 
negative control and exposures. The current results may thus 
suggest that drinking in the second and third trimester may 
be affected by other confounders in addition to those shared 
with drinking in the first trimester and before pregnancy. A 
thorough discussion of these findings is beyond the scope 
of the current paper.

Maternal drinking before pregnancy may affect mater-
nal drinking during pregnancy, and the data were therefore 
analyzed with the analysis model without AR paths as well 
as with the modified model allowing such paths. The con-
clusion was the same regardless of which model was used.

Limitations

The current study has several limitations that may reduce 
generalizability of the findings. First, real-life researchers 
generally do not know if their data match the scenarios 
simulated here. However, the current results show that the 
latent variable negative control approach works well in a 
variety of different situations, and that the assumption of 
equal magnitude of effect from confounder to negative con-
trol and exposures can be relaxed. Second, the simulated 

scenarios are only models of a much more complex reality, 
and the findings may thus not be relevant to situations that 
differ markedly from the ones examine here. Third, even if 
average estimates over the 500 samples were unbiased, there 
was also substantial variability in estimates (as shown by 
the horizontal lines in Fig. 7). The 500 samples were drawn 
randomly from the populations, thus introducing variability. 
A real-life researcher working with only one sample may 
thus reach wrong conclusions due to random variation. This 
emphasizes the importance of replicating findings from real-
life studies in different samples. Fourth, in real life studies 
measurement error in the exposures and negative control 
variables may introduce bias in the estimates [42]. This 
highlights the benefit of using multiple item measures, thus 
enabling constructing latent variables for the exposures and 
the negative control as well.

Conclusion

The current study introduces a latent variable approach to 
examine associations between maternal health behavior 
during pregnancy and child outcomes. In this approach, a 
negative control variable and repeated measures of maternal 
health behavior during pregnancy are indicators for a latent 
variable representing unobserved confounding. The main 
aim of this approach was to relax the assumption generally 
held when using a negative control variable—that the effects 
of the confounder are equal in magnitude on the negative 
control and the exposures. Data simulations showed that 
the analysis approach could handle situations where this 
assumption was violated. The current analytic approach 
thus extends the utility of negative control variables in stud-
ies of maternal health behavior during pregnancy and child 
outcomes. However, the approach also has its limitations, 
as illustrated and discussed above. Real-life data were used 
to illustrate the approach, suggesting that a positive asso-
ciation between maternal drinking in the first trimester and 
ADHD symptoms in the child might have been confounded 
by unmeasured factors.
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