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REVIEW

Prenatal medication exposure and epigenetic outcomes: a systematic literature 
review and recommendations for prenatal pharmacoepigenetic studies
Emilie Willoch Olstad a,b, Hedvig Marie Egeland Nordeng a,b,c, and Kristina Gervin a,b,d

aPharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University 
of Oslo, Oslo, Norway; bPharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 
Norway; cDepartment of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway; dDepartment of Research, 
Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway

ABSTRACT
When used during pregnancy, analgesics and psychotropics pass the placenta to enter the foetal 
circulation and may induce epigenetic modifications. Where such modifications occur and 
whether they disrupt normal foetal developme nt, are currently unanswered questions. This 
field of prenatal pharmacoepigenetics has received increasing attention, with several studies 
reporting associations between in utero medication exposure and offspring epigenetic outcomes. 
Nevertheless, no recent systematic review of the literature is available. Therefore, the objectives of 
this review were to (i) provide an overview of the literature on the association of prenatal 
exposure to psychotropics a nd analgesics with epigenetic outcomes, and (ii) suggest recommen-
dations for future studies within prenatal pharmacoepigenetics. We performed systematic litera-
ture searches in five databases. The eligible studies assessed human prenatal exposure to 
psychotropics or analgesics, with epigenetic analyses of offspring tissue as an outcome. We 
identified 18 eligible studies including 4,419 neonates exposed to either antidepressants, anti-
epileptic drugs, paracetamol, acetylsalicylic acid, or methadone. The epigenetic outcome in all 
studies was DNA methylation in cord blood, placental tissue or buccal cells. Although most 
studies found significant differences in DNA methylation upon medication exposure, almost no 
differences were persistent across studies for similar medications and sequencing methods. The 
reviewed studies were challenging to compare due to poor transparency in reporting, and 
heterogeneous methodology, design, genome coverage, and statistical modelling. We propose 
10 recommendations for future prenatal pharmacoepigenetic studies considering both epidemio-
logical and epigenetic perspectives. These recommendations may improve the quality, compar-
ability, and clinical relevance of such studies. PROSPERO registration ID: CRD42020166675.
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Background

Every day, pregnant women use medications for 
which the scientific evidence on foetal safety is lim-
ited or inconclusive. As most medications pass both 
the placental and blood-brain barriers during gesta-
tion [1–4], common medications such as analgesics 
and psychotropics may exhibit pharmaceutical 
effects in the foetus and potentially disrupt normal 
foetal development. This reasoning is based on the 
Developmental Origins of Health and Disease 
(DOHaD) hypothesis, which is a conceptual frame-
work linking prenatal environmental exposures to 
health and disease in later life [5–9]. Indeed, many 
studies have reported a variety of adverse 

developmental outcomes as sociated with in utero 
medication exposure, including developmental 
delays and abnormalities (comprehensively reviewed 
in [10–18] and the textbook by Schaefer et al. [19]).

T he mechanisms by which prenatal exposure to 
medications impacts foetal development remain 
largely unknown. One suggested mechanism is 
the direct or indirect influence of epigenetic mod-
ifications in the developing foetus [9,20]. 
Epigenetics encompasses regulatory mechanisms 
that can impact genome stability and gene tran-
scription, such as histone modifications and DNA 
methylation (DNAm) of cytosine-phosphate- 
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guanine sites (CpGs). Such modifications are 
reversible and can be influenced by both genetics 
and environmental factors, such as medications 
[21], making epigenetic changes plausible media-
tors of the prenatal environmental impact on 
developmental outcomes [9,20].

The research on epigenetic modifications in 
neonates exposed to medications in utero, here-
after referred to as prenatal pharmacoepigenetics, 
has gained increasing attention in recent years. 
Although the literature on prenatal pharmacoepi-
genetics is growing, only one systematic review 
summarizing the findings on medications that 
potentially interfere with foetal development is 
available [22]. However, this review only included 
studies on antidepressants. Therefore, the primary 
aim of the current review is to provide an overview 
of the literature on the association of prenatal 
exposure to psychotropics and analgesics with epi-
genetic outcomes. In addition, by evaluating the 
eligible studies from both epidemiological and epi-
genetic perspectives, this review also aims to pro-
vide recommendations for future prenatal 
pharmacoepigenetic research to improve the over-
all quality, comparability, and clinical relevance of 
prenatal pharmacoepigenetic association studies.

Methods

Search strategy

Literature searches were performed in the 
MEDLINE, EMBASE, PsycINFO, Scopus, and 
Web of Science databases. The searches were first 
completed on 19 January 2020, and any new stu-
dies meeting the eligibility criteria, published 
before 1 September 2020, were included in the 
final review. In addition, the reference lists of the 
eligible articles and references of 35 relevant 
reviews were screened to ensure complete coverage 
of the literature. Prior to performing the literature 
searches, a detailed search strategy and vocabulary 
were developed with support from experienced 
librarians in medicine, pharmacy, and psychology. 
We included studies investigating (i) prenatal 
exposure to (ii) psychotropics and analgesics with 
(iii) an epigenetic outcome. The search terms for 
these three criteria are listed in Supplementary 
Table S1. Supplementary Table S2 provides an 

example of a search in EMBASE. The review is 
reported in adherence to the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines [23], and the protocol and 
search strategy are available in the PROSPERO 
database (registration ID: CRD42020166675) 
[24,25].

Inclusion criteria

The studies included in this review were selected 
based on the participants, intervention/exposure, 
comparison group, outcome, and study design 
(PICOS) criteria [26]. Participants were defined as 
children (<18 y old) prenatally exposed to psycho-
tropics or analgesics for which epigenetic data were 
available. Anatomical Therapeutic Chemical (ATC) 
codes were used to identify medication groups in 
accordance with the World Health Organization 
ATC index [27]. The exposure was defined as use 
of antidepressants (ATC code: N06A), psycholep-
tics (N05), antiepileptic drugs (AEDs; N03), analge-
sics (N02), or non-steroidal anti-inflammatory 
drugs (NSAIDs; M01A) during pregnancy. We spe-
cifically selected analgesics and psychotropics, based 
on the expertise of our research group, biological 
plausibility, and the emerging number of pharma-
coepigenetic studies on analgesics and psychotro-
pics. The comparison group included children of 
mothers who did not use the medication of interest 
during pregnancy. The outcome was epigenetic 
measurements in tissue samples from exposed and 
unexposed children (<18 y old). If the study also 
included data on immediate or long-term develop-
mental outcomes in the children, we reported these 
as well. Studies investigating the same data sets 
were all eligible if they reported on different expo-
sures and/or outcomes. Only original articles with 
the study designs case-control, cohort, or rando-
mized controlled trial were included. No limitations 
were applied regarding the time of publication, but 
only articles in English or Scandinavian languages 
were eligible.

Data extraction

After searching and retrieving the results from the 
databases, any duplicates were removed in 
EndNote X8.2 and the remaining records 
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uploaded to the online systematic review data 
management platform Rayyan [28]. Two reviewers 
(KG and EWO) independently screened the titles 
and abstracts, excluding studies that did not meet 
the inclusion criteria. If the eligibility of a paper 
was unclear based on the title and abstract, it was 
included for the next round of screening. In the 
second screening, the full-text versions of all 
papers were read and the final exclusion of papers 
performed. Any disagreement between the two 
reviewers was resolved by a third reviewer 
(HMEN).

Results

Outcomes of the screening and selection process

The initial searches yielded a total of 2,159 
records: 488 records in MEDLINE, 880 records 
in EMBASE, 88 records in PsycINFO, 194 

records in Scopus, and 509 records in Web of 
Science (Figure 1). A total of 871 duplicated 
records were removed, leaving 1,288 unique arti-
cles to screen the titles and abstracts in Rayyan 
[28]. After the first screening, 1,262 papers were 
excluded due to being non-original studies 
(n = 605) or failing to meet the defined PICOS 
criteria (n = 657). After reading the complete 
texts of the 26 records remaining from the first 
round, we excluded 11 records due to wrong 
exposure according to our criteria (could not 
differentiate medication exposure across groups; 
n = 5), wrong population according to our cri-
teria (participants were too old upon exposure 
or sampling; n = 3), or wrong comparison 
groups according to our criteria (did not include 
a non-medicated group; n = 3). By screening the 
reference lists of the 15 remaining records and 
35 relevant reviews, we identified 1 additional 
article. Two additional studies meeting the 

Figure 1. Flow chart of article screening and selection based on the template from PRISMA [23]. ‘Second search’ refers to eligible 
studies published during the manuscript revision process.
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eligibility criteria were published during the 
revision process (before 1 September 2020) and 
were also included. Consequently, a total of 18 
records were included in the final review.

Overview of the eligible studies
All of the eligible articles were based on data from 
single birth cohorts, except for one study validat-
ing results in an independent cohort [29], and one 
study being a randomized controlled trial [30]. Of 
the eligible articles, nine were epigenome-wide 
association studies (EWASs; median sample size 
241 neonates [interquartile range; IQR: 284]), and 
eleven were candidate gene studies (median sam-
ple size 115 neonates [IQR: 168]). Hence, two 
studies, including 46 and 58 neonates, combined 
epigenome-wide and candidate gene approaches 
[31,32]. The medications included were the psy-
chotropics antidepressants (12 studies; median 
sample size 201 neonates [IQR: 354]), and AEDs 
(2 studies; 18 and 201 neonates), and the analge-
sics paracetamol (2 studies; 281 and 384 neonates), 
acetylsalicylic acid (1 study; 358 neonates), and 
methadone (1 study; 53 neonates). The epigenetic 
outcome investigated in all papers was DNAm, in 
cord blood (13 studies; median sample size 201 
neonates [IQR: 341]), placental tissue (5 studies; 
median sample size 236 neonates [IQR: 38]), and/ 
or buccal cells (2 studies; 236 and 53 neonates). 
The neonatal tissues were sampled within 72 h 
after birth in all studies, except by Cardenas et al. 
(2019), who also collected blood from children 
aged 3–5 y and 7–11 y [29]. All studies adjusted 
for potential covariates and/or confounders in 
their statistical analyses or by design, but the num-
ber of variables under consideration differed 
greatly (Supplementary Table S3). The covariates 
most frequently accounted for were maternal age 
(n = 16), smoking during pregnancy (n = 13), 
infant sex (n = 12), gestational age (n = 10), and 
folate use in pregnancy (n = 10).

In addition to the epigenetic outcomes, several 
studies reported phenotypic outcomes in children, 
specifically poor foetal growth (n = 1) [33], birth 
weight (n = 2) [31,34], severity of neonatal absti-
nence syndrome (n = 1) [34], ADHD (n = 1) [35], 
stress reactivity (n = 2) [36,37], and soothability 
(n = 1) [38] (Supplementary Table S4). One study 

performed a mediation analysis of medication 
exposure, epigenetic modification, and neonatal 
phenotypic outcome [37]. This study assessed 
whether the DNAm of a CpG in the placental 
NR3C2 gene acted as a mediator of the effect of 
maternal depressive symptoms on cortisol reactiv-
ity in 12-month-old infants [37]. The effects of 
maternal depression on cortisol levels were 
decomposed into direct effects and DNAm- 
mediated indirect effects, finding that, although 
the indirect effect of DNAm was positive, it did 
not overcome the larger negative direct effect of 
depressive symptoms on infant cortisol levels [37]. 
However, the analysis demonstrated an increased 
DNAm at the NR3C2 CpG upon in utero antide-
pressant exposure, suggesting that maternal anti-
depressant use during pregnancy enhances the 
indirect effect of NR3C2 DNAm on the infant 
stress response [37].

All EWASs used the Illumina platform [39] to 
assess DNAm with the MethylationEPIC (n = 2), 
HumanMethylation 450 (n = 3), or 
HumanMethylation 27 (n = 4) bead chips. To 
assess the association between CpG DNAm and 
medication exposure, the majority of the EWASs 
used linear regression models (n = 6). In most of 
the EWASs, a result was considered significant if 
the false discovery rate (FDR) adjusted p-value was 
<0.05 (n = 8), except for one study that used an 
FDR adjusted p < 0.1 [32].

In the candidate gene studies, several meth-
ods were used to investigate DNAm: the 
Illumina platform (n = 1) [33], the 
SEQUENOM MassARRAY EpiTYPER platform 
(n = 3), and the PyroMark system (n = 7). The 
studies reported the methylation percentages 
(n = 6), mean methylation percentages of tri-
plicates (n = 4) or the β value from the 
Illumina microarray (n = 1) [33]. Various sta-
tistical tests were applied to assess differential 
DNAm. For these tests, three studies used FDR 
adjusted p-values (p < 0.25 in one study; 
p < 0.05 in two studies), two studies used the 
Bonferroni-corrected p-value, and the last six 
studies applied an unadjusted p < 0.05. 
Further details on the studies are available in 
Tables 1 and 2. For excellent discussions of 
statistical approaches in epigenetic studies, we 
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recommend the recently published reviews by 
Teschendorff and Relton [40], van Rooij et al. 
[41], and Mansell et al. [42].

Results of prenatal medication exposure and 
neonatal DNA methylation

The most examined medication group in prenatal 
pharmacoepigenetics was antidepressants, investi-
gated in 12 studies of 3,320 neonates (2 EWASs, 8 
candidate gene studies, and 2 studies combining 
an epigenome-wide and a candidate gene 
approach). In the most recent EWAS, Cardenas 
et al. [29] discovered 130 differentially methylated 
CpGs in cord blood samples collected from neo-
nates exposed to antidepressants in utero. One of 
these sites that mapped to ZNF575 was replicated 
in an independent cohort [29]. Schroeder et al. 
[43] found that the exposed neonates had two 
differentially methylated CpGs in TNFRSF21 and 
CHRNA4. However, the authors disregarded these 
findings as false positives considering the small 
effect sizes (DNAm changes of 1–3%) [43]. In 
the EWAS conducted by Gurnot et al. [31], three 
CpGs were differentially methylated in neonates 
prenatally exposed to serotonin reuptake inhibi-
tors (SRIs; CYP2E1, EVA1, and SLMAP). 
However, in the EWAS by Non et al. [32], no 
CpGs were significantly different in neonates 
exposed to selective serotonin reuptake inhibitors 
(SSRIs) in utero.

The candidate gene studies investigated CpGs in 
a total of 32 different genes (Supplementary Table 
S6). Most of the included genes were chosen based 
on their suggested association with psychiatric dis-
orders (e.g., the serotonin transporter gene 
SLC6A4) [32,38,44], stress reactivity (e.g., the glu-
cocorticoid and mineralocorticoid receptor genes 
NR3C1 and NR3C2) [32,36,37,45], or adverse early 
life events (e.g., the brain-derived neurotrophic 
factor gene BDNF) [32,44]. In the studies combin-
ing epigenome-wide and candidate gene 
approaches [31,32], the candidate gene investiga-
tion was used to verify the epigenome-wide results. 
However, except for the verification of CYP2E1 
DNAm by Gurnot et al. [31], neither of the 

significant genes in either of the candidate gene 
studies were also significant in the EWASs of 
antidepressants.

Four genes involved in neurotransmitter recep-
tor or transporter activity (NR3C1, SLC6A4, and 
FKBP5) or neuronal differentiation (BDNF) were 
investigated across several studies (Table 3). The 
DNAm of neither NR3C1 nor BDNF was asso-
ciated with prenatal exposure to antidepressants 
in any of the studies investigating these genes 
[32,36,37,45]. For SLC6A4, the results were contra-
dictory. Although Gartstein et al. [38] found an 
increase in DNAm at six CpGs in cord blood upon 
prenatal SSRI exposure, Non et al. [32] reported a 
decrease in DNAm at one CpG in cord blood 
upon prenatal SSRI exposure when examined by 
pyrosequencing but not in the epigenome-wide 
approach. Finally, Devlin et al. [44] found no 
association between in utero exposure to SSRIs or 
serotonin and noradrenaline reuptake inhibitors 
(SNRIs), and DNAm of SLC6A4 in cord blood. A 
CpG in FKBP5, which encodes a co-regulator of 
the glucocorticoid receptor, was negatively asso-
ciated with in utero SSRI exposure in cord blood 
[32], but not in the placenta [33]. In summary, the 
results of studies on prenatal antidepressant expo-
sure and DNAm are largely inconsistent.

Prenatal AED exposure was investigated in two 
EWASs [46,47], which reported discrepant results. 
Emes et al. [46] found no global DNAm differ-
ences in the cord blood of neonates exposed to 
AEDs in utero, whereas Smith et al. [47] observed 
decreased global DNAm in the cord blood of neo-
nates prenatally exposed to AEDs and no global 
DNAm differences in placental tissue. 
Furthermore, Emes et al. [46] reported differential 
DNAm at 662 CpGs when comparing cord blood 
from neonates that were exposed and not exposed 
to AEDs in utero, whereas Smith et al. [47] found 
14 CpGs with significantly reduced DNAm in the 
same tissue, including three CpGs that were also 
significant in placentae.

Two EWASs examined the association between 
in utero paracetamol exposure and DNAm in pla-
centae [48] or cord blood [35]. Addo et al. [48] 
reported 24 differentially methylated CpGs in pla-
cental tissue when comparing exposed and 
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unexposed pregnancies. Using a different study 
design, Gervin et al. [35] compared DNAm in 
long-term paracetamol-exposed children with 
ADHD to short-term-exposed children with 
ADHD (2,089 differentially methylated CpGs), 
unexposed children with ADHD (192 differentially 
methylated CpGs), and unexposed children with-
out ADHD (6,211 differentially methylated CpGs). 
Although the studies report vastly different num-
bers of significant CpGs, both Gervin et al. [35] 
and Addo et al. [48] concluded that prenatal para-
cetamol exposure may be associated with DNAm 
in cord blood from susceptible individuals or pla-
centae, respectively.

Yeung et al. [30] investigated the association 
between prenatal acetylsalicylic acid exposure and 
DNAm in cord blood. In the randomized con-
trolled trial, women were randomly assigned to 
receive 81 mg of acetylsalicylic acid or placebo 
every day until conception (within six menstrual 
cycles) and during pregnancy [49]. The DNAm of 
one CpG (3,500 base pairs upstream of the 
POU4F1 promoter) in cord blood was significantly 
associated with prenatal exposure to acetylsalicylic 
acid [30]. However, Yeung et al. concluded that 
the association of prenatal acetylsalicylic acid 
exposure with DNAm in cord blood is negligible, 
as only one CpG with a minor effect size (1% 
increase in CpG DNAm) was discovered in their 
association study [30].

In the EWAS on prenatal methadone exposure, 
McLaughlin et al. [34] reported a significant 
increase in buccal cell DNAm of ABCB1, CYP2D6, 
and OPRM1 in neonates of mothers who were 
methadone-maintained during pregnancy. The 
authors argued that their results demonstrated 
that opioids interact with epigenetic mechanisms, 
and that the altered DNAm of the opioid metabo-
lism-related genes may have a functional signifi-
cance that needs further investigation [34].

Discussion

In this review, we have systematically summarized 
the literature investigating associations between 
prenatal medication exposure and epigenetic dif-
ferences in neonates. We included a total of 18 
studies on DNAm, examining in utero exposure to 
antidepressants, AEDs, paracetamol, acetylsalicylic 

acid, or methadone. We found substantial incon-
sistency across studies, including heterogeneity in 
methodology, materials, design, genome coverage, 
and statistical modelling, making the interpreta-
tion of findings and cross-study comparisons chal-
lenging. The novelty of the field combining 
epidemiological and pharmacoepigenetic methods 
may partly explain this heterogeneity due to a lack 
of consensus on how to perform analyses and 
report findings. Therefore, we discuss the results 
of the reviewed studies with respect to both epide-
miological and epigenetic considerations, and sug-
gest 10 recommendations for future studies in 
prenatal pharmacoepigenetics, as summarized in 
Box 1.

Prenatal pharmacoepigenetic candidate gene 
studies should have a clearly defined hypothesis 
guided by teratological principles [50] and phar-
macological, epidemiological, and biological 
knowledge (pt. 1, Box 1). Founding the research 
question on a well-informed hypothesis is funda-
mental for a transparent and well-designed prena-
tal pharmacoepigenetic study. This was mostly 
done in the candidate gene studies included in 
this review, which provided a rationale for select-
ing the genes being studied, such as the gene being 
related to psychiatric disorders (the serotonin 
transporter gene SLC6A4) [32,38,44] or stress 
reactivity (the glucocorticoid and mineralocorti-
coid receptor genes NR3C1 and NR3C2) 
[32,36,37,45].

Small molecular and structural differences 
between drugs are known to cause variations in 
toxicity and teratogenicity [50]. Although the 
reviewed studies on analgesics focused on one 
specific medication [30,34,35,48], the studies on 
psychotropics investigated the effect of medication 
classes on neonatal DNAm [29,31–33,36–38,43– 
47,51,52]. In the two studies on AEDs [46,47], 
several medications were investigated, which may 
be too broad considering the various different 
pharmacological [53,54] and epigenetic mechan-
isms of action of AEDs [21,55,56]. For example, 
Smith et al. [47] jointly analysed seven different 
AEDs among 53 women, but also performed a 
stratified analysis of carbamazepine monotherapy 
(36 women). In contrast, Emes et al. [46] jointly 
analysed valproate, lamotrigine, and carbamaze-
pine among nine women, and did not stratify 
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their analyses on individual medications. Analyses 
on a medication class level may mask effects or 
give heterogeneous results that are difficult to 
interpret. Consequently, prenatal pharmacoepige-
netic studies should aim to investigate individual 

medications rather than medication classes and 
ensure sufficient study power to do this (pt. 2 & 
pt. 3, Box 1).

The median sample size of the reviewed studies 
was 201 (IQR of 289), with sample sizes as low as 

Box 1. (1)HYPOTHESIS: candidate gene studies should use a plausible hypothesis to guide the study design Hypotheses should be 
defined prior to designing a candidate gene study, and be guided by principles of teratology, knowledge of pharmacological 
mechanisms, and epidemiological and biological observations. Hypothesis-free EWASs are also important as the field of prenatal 
pharmacoepigenetic studies is still emerging. 

(2)MEDICATION SELECTION: investigate individual medications rather than medication classes Unless the pharmacological and 
epigenetic mechanisms of action of medications are expected to be similar across the medication class, medications should be 
analysed on an individual substance level. 

(3)STATISTICAL POWER: ensure sufficient sample sizes to detect relevant DNAm differences To detect biologically relevant DNAm 
associations and to ensure valid interpretation of the results, tools developed for power assessments in epigenetic studies should be 
used when planning such studies. 

(4)STUDY DESIGN: include a disease comparison group to disentangle medication from indicationStudies should include a disease 
comparison group to better differentiate the effects of exposure to medication from the underlying maternal disease. This may 
reduce the impact of confounding by indication. 

(5)SYSTEMATIC ERROR: assess selection bias, information bias, and confounding Selection bias should be assessed by comparing 
characteristics of study samples to the target population. The validity of medication exposure, neonatal phenotype, and other 
covariates should be reported, and information bias and misclassification addressed. Measured confounders of the exposure– 
outcome association(s) are to be adjusted for and residual confounding investigated. Importantly, cell type heterogeneity should be 
considered a confounding factor in epigenetic studies. 

(6)TISSUE SELECTION: biomarkers and extrapolation of DNAm patterns across tissues If the research aim is not only to report a tissue- 
independent biomarker, but to extrapolate results to other target tissues, the limitations of such translation should be recognized,, 
and reduced using software applications or data sets on cross-tissue correlations of modifications. 

(7)LONGITUDINAL PERSPECTIVE: assess persistence of DNAm patterns throughout childhoodThe follow-up of epigenetic patterns 
later in childhood is essential to assess the relevance of these changes over time, as they may suggest a long-term impact on the 
phenotypic outcome.  

(8)DATA INTEGRATION: integrate epigenetic data with complementary omics dataIntegration of complementary omics data, such as 
genomic and transcriptomic data, can strengthen functional and causal inferences of the findings.  

(9) CAUSAL INFERENCE: provides a framework for interpreting exposure-outcome associations Causal inference methods, such as 
two-step Mendelian randomization, may support the inference of causation from exposure–outcome associations, including how 
medication may impact phenotypic outcome via DNAm changes. Importantly, the underlying assumptions of causal methods are 
often untestable and, therefore, such methods should be used carefully. 

(10)REPLICATION: replicate findings using different methods and independent cohorts Replication both across methods and in 
independent cohorts is essential to increase the validity of the findings and the generalizability of the results to enhance clinical 
relevance. 
.
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18 [46] and 23 [31]. None of the studies reported a 
power assessment to justify the selected sample 
size. The power of an EWAS depends on many 
variables, including the significance level, effect 
size, sample size, array technology, tissue type, 
and distribution of DNAm differences [57]. 
Therefore, power calculations are challenging, but 
simulation studies for power estimation [42,58,59], 
as well as power assessment tools [42,57], may 
support the investigation of power in epigenetic 
studies. In epigenetic epidemiology, the effect sizes 
are expected to be small, ranging from 0.05 to 
0.1 and upwards [60,61], as evidenced in studies 
on prenatal smoking exposure, with effect sizes 
commonly ranging from 0.02 to 0.1 [62,63]. We 
recommend that future prenatal pharmacoepige-
netic studies perform and report power assess-
ments in order to ensure sufficient power to 
detect genuine epigenetic differences between 
comparison groups (pt. 3, Box 1).

The indication for medication use is an impor-
tant potential confounder in prenatal pharmacoe-
pigenetic studies, as the observed outcome may be 
associated with the underlying maternal illness 
and not the medication used to treat it [64,65]. 
Among the 14 studies on psychotropics in this 
review, only eight studies included such a compar-
ison group [29,32,33,36,37,44,51,52]. Notably, 
seven of these studies found an association 
between the underlying maternal depression and 
DNAm in the neonate [29,32,33,36,37,44,51], 
emphasizing the importance of including this 
comparison group in future prenatal pharmacoe-
pigenetic studies (pt. 4, Box 1).

When defining medication-exposed comparison 
groups, more than half of the reviewed studies 
relied partly or entirely on self-reported medica-
tion use during pregnancy [29,35,37,38,43,45– 
48,51]. This measure does not necessarily reflect 
the actual medication use [66–68] and is vulner-
able to recall bias if reported retrospectively [69]. 
In five studies, medication exposure was assessed 
at birth using maternal and/or neonatal blood 
concentrations of the medication [31,34,37,47,51]. 
Although informative at birth, this measure does 
not reflect medication use in earlier stages of preg-
nancy. Similarly, the eight studies investigating the 
association between DNAm and neonatal pheno-
typic outcomes included various outcome Ta
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definitions without assessing the validity of the 
measurement [31,33–38,46]. In five studies, data 
were measured objectively (birth weight [31,33,46] 
and cortisol levels [36,37]), whereas two studies 
relied on diagnoses by specialists [34,35], and one 
study used parent reports on infant temperament 
[38]. An assessment of medication exposure, neo-
natal phenotype, and covariates is crucial to avoid 
misclassification. Therefore, we recommend that 
future prenatal pharmacoepigenetic studies per-
form sensitivity analyses to assess the robustness 
of the findings, taking into account the validity of 
the measures (pt. 5, Box 1). For example, methods 
to quantify the impact of exposure and outcome 
misclassifications, such as probabilistic bias analy-
sis [70], are highly recommended [64].

A wide range of different covariates were con-
sidered in the studies (Supplementary Table S3). 
Selecting an appropriate set of confounders to 
control for is critical to avoid systematic bias (pt. 
5, Box 1). Ten studies selected confounders by 
assessing associations between covariates, expo-
sure, and outcome [31,33,34,36–38,45,46,51,52]. 
We suggest to control for covariates that are 
assumed to be confounders, i.e., covariates that 
are not part of the causal path, and that are both 
a cause of the exposure and the outcome. 
Therefore, the covariates to be accounted for 
should occur upstream of the prenatal exposure, 
while mediators (which are part of the causal path-
way) should not be accounted for when investigat-
ing the total effect of the exposure on the outcome. 
The specific covariates to be taken into account 
need to be assessed for each individual study, as 
the relevance of the covariates depends on several 
factors (e.g., study design and tissue type), and 
include both technical covariates related to labora-
tory procedures and biological covariates. 
Examples of biological covariates to be evaluated 
are maternal age, smoking during pregnancy, 
infant sex, gestational age, and folate use in preg-
nancy, which were the covariates most commonly 
accounted for in the studies included in this review 
(Supplementary Table S3). To this end, future 
prenatal pharmacoepigenetic studies may also ben-
efit from implementing causal inference tools, 
such as directed acyclic graphs (DAGs) [71], to 
identify a sufficient set of confounders for adjust-
ments [64]. Such investigations can be 

complemented by assessing whether the selected 
confounders largely capture the model variability, 
as was performed by surrogate variable analysis in 
Gervin et al. [35], and by principal component 
analyses in Addo et al. [48] and Cardenas et al. 
[29]. For an excellent overview of a general 
approach to identify relevant confounders in 
observational studies, please refer to the review 
by VanderWeele [72].

The majority of the reviewed studies were based 
on cord blood, which consists of cells exhibiting 
cell type-specific DNAm patterns [40]. Therefore, 
prenatal pharmacoepigenetic studies should con-
sider whether DNAm differences associated with 
medication exposure reflect variation in constitu-
ent cell types, which are known to mediate or 
confound the exposure associations [40,73]. 
When investigating cell-type proportions as a 
mediator, in order to assess the direct effect of 
medication exposure on associated DNAm differ-
ences, it may be necessary to adjust for estimated 
or measured cell-type composition (see, e.g., Liu et 
al. [74] and Gervin et al. [75]). However, if the 
total effect of medication exposure on DNAm is 
more interesting, for instance when searching for 
potential biomarkers of a phenotypic outcome, the 
cell-type composition should not be accounted for, 
as it may remove relevant DNAm–phenotypic out-
come associations (see, e.g., Ollikainen et al. [76]). 
Cell type composition may act as a confounder 
when assessing the extent to which DNAm med-
iate the effect of drug exposure on a phenotypic 
outcome, and should in such instances be 
accounted for [73]. In summary, variation in cell- 
type composition confers an important covariate 
in epigenetic studies, and should be appropriately 
evaluated [40,60,73,77]. Surprisingly, only six of 
the reviewed studies considered cell-type composi-
tion in their analyses [29,30,35,45,48,52], empha-
sizing the need for increased awareness among 
prenatal pharmacoepigenetic researchers to evalu-
ate cell types in future studies (pt. 5, Box 1). There 
are several different methods to determine and 
account for the cell-type composition in tissue 
samples, and these are extensively described in 
the excellent recent review by Teschendorff and 
Relton [40].

Among the reviewed records, eight studies 
hypothesized an association between DNAm and 
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neonate phenotypes [31,33–38,46], including five 
studies concerning brain-related phenotypic out-
comes [34–38]. However, DNAm in peripheral 
surrogate tissues does not necessarily resemble 
DNAm in the target tissue [78–80], which chal-
lenges the accuracy of the extrapolation of the 
findings. Although this limitation was acknowl-
edged in most studies [29–32,35–38,43– 
45,47,48,51], only one study attempted to reduce 
the constraint by including a correlation analysis 
of select CpGs across adult whole blood and brain 
tissue [29]. Importantly, investigation of peripheral 
tissues is still considered valuable, since biomar-
kers of maternal disease or child developmental 
outcomes do not need to be from the relevant 
tissue (i.e., do not need to be tissue-specific). 
However, to realize the ultimate aim of prenatal 
pharmacoepigenetics of gaining direct mechanistic 
insights into how medication exposure impacts the 
foetus with potential phenotypic consequences, 
future studies should validate tissue extrapolation 
by, for example, investigating cross-tissue correla-
tions in available databases [61,81–85] (pt. 6, Box 
1). Yet, current databases are mostly available on 
adult tissues, limiting the relevance to prenatal 
pharmacoepigenetic studies. Researchers have 
been calling for initiatives to develop biobanks of 
foetal and child brain specimens, while also taking 
into account the ethical issues of building such 
biobanks [86].

Only one of the reviewed studies investigated 
DNAm patterns longitudinally during childhood, 
finding that DNAm at a CpG in ZNF575 persisted 
into early childhood [29]. Though investigating 
the DNAm at birth provides information on the 
immediate impact of prenatal medication expo-
sure, the follow-up of epigenetic patterns later in 
childhood is valuable to assess the persistence over 
time and increase the clinical relevance of the 
findings (pt. 7, Box 1).

The clinical relevance of prenatal pharmacoepi-
genetic research may also be strengthened by func-
tional and causal interpretations of the results. 
Using a multi-omics approach with integration of 
omics data (e.g., genomics, epigenomics, and tran-
scriptomics data) [87] could substantiate the epi-
genetic findings (pt. 8, Box 1). However, the 
reviewed studies only used single omics data (i.e., 
epigenomics). Although single omics data are 

potentially useful both as biomarkers and in pro-
viding insight into biological pathways, this is lim-
ited to correlations or associations often reflecting 
reactive, rather than causative, processes. We 
recommend that future studies include additional 
omics data, as this may enable (i) investigation of 
the functional consequences of DNAm on gene 
expression [40], (ii) adjustment for the genetic 
variation associated with DNAm variation [88– 
90], and (iii) utilization of genomic methylation 
quantitative trait loci (mQTLs) to implement cau-
sal inference methods, such as two-step Mendelian 
randomization [40,91] (pt. 9, Box 1). There are 
several openly accessible resources making omics 
data available for integration, as thoroughly 
reviewed by Walton, Relton and Caramaschi [92].

Causal modelling and reasoning are increasingly 
being applied in genetic epidemiology to 
strengthen the ability to make causal inferences 
about associations, but it is still new to the field 
of pharmacoepigenetics [40,64]. For example, two- 
step Mendelian randomization [91,93–95] has 
been used to assess how DNAm can mediate an 
association between prenatal exposure and pheno-
typic outcomes in children [96,97]. Notably, only 
one reviewed study attempted to make causal 
inferences about an association between prenatal 
antidepressant exposure, cord blood DNA, and 
infant stress reactivity in a mediation analysis 
[37]. We foresee important advances in future 
prenatal pharmacoepigenetic studies using the 
causal inference framework (pt. 9, Box 1). 
Importantly, the causal models rely on assump-
tions that need to be met for them to be valid 
[98]. As these assumptions are often untestable 
[98], careful use of the causal inference framework 
in pharmacoepigenetic studies is essential.

Lastly, to validate findings, replication using a 
different technology and in an independent cohort 
is essential, both to determine the robustness of 
the associations and to assess the level of technical 
and biological variation. Notably, only two of the 
reviewed studies applied more than one method to 
assess DNAm [31,32], and only one study 
attempted to validate their results in an indepen-
dent cohort [29], emphasizing the need for an 
increased focus on replication in prenatal pharma-
coepigenetics (pt. 10, Box 1). Several multi-cohort 
consortia to enable replication of studies are 
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already in place, such as the Pregnancy and 
Childhood Epigenetics consortium (PACE) [99].

Conclusion

Investigating the potential effects of pharmacolo-
gical treatment in pregnancy is essential to estab-
lish foetal epigenetic safety, understand the 
underlying mechanisms, and recognize the clinical 
consequences for the offspring. However, studies 
on prenatal medication exposure and epigenetic 
changes are largely heterogeneous and inconsis-
tent. To improve the quality, comparability, and 
interpretability of future prenatal pharmacoepige-
netic studies, we propose 10 recommendations 
bridging the fields of prenatal epidemiology and 
epigenetics. Epidemiological approaches and cau-
sal inference frameworks will reduce systematic 
bias and improve our ability to interpret expo-
sure–outcome associations, including how medica-
tions may impact phenotypic outcomes via 
changes in DNAm. Furthermore, it is essential to 
consider the persistence of DNAm patterns over 
time and the potential for cross-tissue extrapola-
tion when assessing the biological relevance of the 
epigenetic contribution. Importantly, integrating 
more omics data and implementing two-step 
Mendelian randomization can strengthen the 
functional and causal inferences of the findings. 
In conclusion, a consensus on how to perform and 
report prenatal pharmacoepigenetic studies will 
fuel the development of the field and contribute 
to future high-quality studies of clinical relevance.
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