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ABSTRACT

When used during pregnancy, analgesics and psychotropics pass the placenta to enter the foetal
circulation and may induce epigenetic modifications. Where such modifications occur and
whether they disrupt normal foetal developme nt, are currently unanswered questions. This
field of prenatal pharmacoepigenetics has received increasing attention, with several studies
reporting associations between in utero medication exposure and offspring epigenetic outcomes.
Nevertheless, no recent systematic review of the literature is available. Therefore, the objectives of
this review were to (i) provide an overview of the literature on the association of prenatal
exposure to psychotropics a nd analgesics with epigenetic outcomes, and (ii) suggest recommen-
dations for future studies within prenatal pharmacoepigenetics. We performed systematic litera-
ture searches in five databases. The eligible studies assessed human prenatal exposure to
psychotropics or analgesics, with epigenetic analyses of offspring tissue as an outcome. We
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identified 18 eligible studies including 4,419 neonates exposed to either antidepressants, anti- recommendations

epileptic drugs, paracetamol, acetylsalicylic acid, or methadone. The epigenetic outcome in all
studies was DNA methylation in cord blood, placental tissue or buccal cells. Although most
studies found significant differences in DNA methylation upon medication exposure, almost no
differences were persistent across studies for similar medications and sequencing methods. The
reviewed studies were challenging to compare due to poor transparency in reporting, and
heterogeneous methodology, design, genome coverage, and statistical modelling. We propose
10 recommendations for future prenatal pharmacoepigenetic studies considering both epidemio-
logical and epigenetic perspectives. These recommendations may improve the quality, compar-
ability, and clinical relevance of such studies. PROSPERO registration ID: CRD42020166675.

Background

Every day, pregnant women use medications for
which the scientific evidence on foetal safety is lim-
ited or inconclusive. As most medications pass both
the placental and blood-brain barriers during gesta-
tion [1-4], common medications such as analgesics
and psychotropics may exhibit pharmaceutical
effects in the foetus and potentially disrupt normal
foetal development. This reasoning is based on the
Developmental Origins of Health and Disease
(DOHaD) hypothesis, which is a conceptual frame-
work linking prenatal environmental exposures to
health and disease in later life [5-9]. Indeed, many

developmental outcomes as sociated with in utero
medication exposure, including developmental
delays and abnormalities (comprehensively reviewed
in [10-18] and the textbook by Schaefer et al. [19]).

T he mechanisms by which prenatal exposure to
medications impacts foetal development remain
largely unknown. One suggested mechanism is
the direct or indirect influence of epigenetic mod-
ifications in the developing foetus [9,20].
Epigenetics encompasses regulatory mechanisms
that can impact genome stability and gene tran-
scription, such as histone modifications and DNA

studies have reported a variety of adverse methylation (DNAm) of cytosine-phosphate-
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guanine sites (CpGs). Such modifications are
reversible and can be influenced by both genetics
and environmental factors, such as medications
[21], making epigenetic changes plausible media-
tors of the prenatal environmental impact on
developmental outcomes [9,20].

The research on epigenetic modifications in
neonates exposed to medications in utero, here-
after referred to as prenatal pharmacoepigenetics,
has gained increasing attention in recent years.
Although the literature on prenatal pharmacoepi-
genetics is growing, only one systematic review
summarizing the findings on medications that
potentially interfere with foetal development is
available [22]. However, this review only included
studies on antidepressants. Therefore, the primary
aim of the current review is to provide an overview
of the literature on the association of prenatal
exposure to psychotropics and analgesics with epi-
genetic outcomes. In addition, by evaluating the
eligible studies from both epidemiological and epi-
genetic perspectives, this review also aims to pro-
vide recommendations for future prenatal
pharmacoepigenetic research to improve the over-
all quality, comparability, and clinical relevance of
prenatal pharmacoepigenetic association studies.

Methods
Search strategy

Literature searches were performed in the
MEDLINE, EMBASE, PsycINFO, Scopus, and
Web of Science databases. The searches were first
completed on 19 January 2020, and any new stu-
dies meeting the eligibility criteria, published
before 1 September 2020, were included in the
final review. In addition, the reference lists of the
eligible articles and references of 35 relevant
reviews were screened to ensure complete coverage
of the literature. Prior to performing the literature
searches, a detailed search strategy and vocabulary
were developed with support from experienced
librarians in medicine, pharmacy, and psychology.
We included studies investigating (i) prenatal
exposure to (ii) psychotropics and analgesics with
(iii) an epigenetic outcome. The search terms for
these three criteria are listed in Supplementary
Table S1. Supplementary Table S2 provides an

example of a search in EMBASE. The review is
reported in adherence to the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [23], and the protocol and
search strategy are available in the PROSPERO
database (registration ID: CRD42020166675)
[24,25].

Inclusion criteria

The studies included in this review were selected
based on the participants, intervention/exposure,
comparison group, outcome, and study design
(PICOS) criteria [26]. Participants were defined as
children (<18 y old) prenatally exposed to psycho-
tropics or analgesics for which epigenetic data were
available. Anatomical Therapeutic Chemical (ATC)
codes were used to identify medication groups in
accordance with the World Health Organization
ATC index [27]. The exposure was defined as use
of antidepressants (ATC code: NO6A), psycholep-
tics (N0O5), antiepileptic drugs (AEDs; N03), analge-
sics (NO2), or non-steroidal anti-inflammatory
drugs (NSAIDs; M01A) during pregnancy. We spe-
cifically selected analgesics and psychotropics, based
on the expertise of our research group, biological
plausibility, and the emerging number of pharma-
coepigenetic studies on analgesics and psychotro-
pics. The comparison group included children of
mothers who did not use the medication of interest
during pregnancy. The outcome was epigenetic
measurements in tissue samples from exposed and
unexposed children (<18 y old). If the study also
included data on immediate or long-term develop-
mental outcomes in the children, we reported these
as well. Studies investigating the same data sets
were all eligible if they reported on different expo-
sures and/or outcomes. Only original articles with
the study designs case-control, cohort, or rando-
mized controlled trial were included. No limitations
were applied regarding the time of publication, but
only articles in English or Scandinavian languages
were eligible.

Data extraction

After searching and retrieving the results from the
databases, any duplicates were removed in
EndNote X8.2 and the remaining records



uploaded to the online systematic review data
management platform Rayyan [28]. Two reviewers
(KG and EWO) independently screened the titles
and abstracts, excluding studies that did not meet
the inclusion criteria. If the eligibility of a paper
was unclear based on the title and abstract, it was
included for the next round of screening. In the
second screening, the full-text versions of all
papers were read and the final exclusion of papers
performed. Any disagreement between the two

reviewers was resolved by a third reviewer
(HMEN).

Results
Outcomes of the screening and selection process

The initial searches yielded a total of 2,159
records: 488 records in MEDLINE, 880 records
in EMBASE, 88 records in PsycINFO, 194

EMBASE
n =880
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records in Scopus, and 509 records in Web of
Science (Figure 1). A total of 871 duplicated
records were removed, leaving 1,288 unique arti-
cles to screen the titles and abstracts in Rayyan
[28]. After the first screening, 1,262 papers were
excluded due to being non-original studies
(n = 605) or failing to meet the defined PICOS
criteria (n = 657). After reading the complete
texts of the 26 records remaining from the first
round, we excluded 11 records due to wrong
exposure according to our criteria (could not
differentiate medication exposure across groups;
n = 5), wrong population according to our cri-
teria (participants were too old upon exposure
or sampling; n = 3), or wrong comparison
groups according to our criteria (did not include
a non-medicated group; n = 3). By screening the
reference lists of the 15 remaining records and
35 relevant reviews, we identified 1 additional
article. Two additional studies meeting the

PsycINFO
n =288

Web of Science
n =509

Scopus
n=194

MEDLINE
n =488
Identification
Screening
Eligibility
Inclusion

Total records
n=2,159

g Duplicates removed
| n=871

Records after duplicate removal
n=1,288

Records excluded
n=1,262

Records screened
n=1,288

Assessment of full-text records

Records excluded

n=26

* Wrong population,
n=3

* Wrong control,
n=3

* Wrong exposure,
n=5

Records after assessment
n=15

Records from other
sources
n=1

Second search
n=18 n=2

Final included records

Figure 1. Flow chart of article screening and selection based on the template from PRISMA [23]. ‘Second search’ refers to eligible

studies published during the manuscript revision process.
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eligibility criteria were published during the
revision process (before 1 September 2020) and
were also included. Consequently, a total of 18
records were included in the final review.

Overview of the eligible studies

All of the eligible articles were based on data from
single birth cohorts, except for one study validat-
ing results in an independent cohort [29], and one
study being a randomized controlled trial [30]. Of
the eligible articles, nine were epigenome-wide
association studies (EWASs; median sample size
241 neonates [interquartile range; IQR: 284]), and
eleven were candidate gene studies (median sam-
ple size 115 neonates [IQR: 168]). Hence, two
studies, including 46 and 58 neonates, combined
epigenome-wide and candidate gene approaches
[31,32]. The medications included were the psy-
chotropics antidepressants (12 studies; median
sample size 201 neonates [IQR: 354]), and AEDs
(2 studies; 18 and 201 neonates), and the analge-
sics paracetamol (2 studies; 281 and 384 neonates),
acetylsalicylic acid (1 study; 358 neonates), and
methadone (1 study; 53 neonates). The epigenetic
outcome investigated in all papers was DNAm, in
cord blood (13 studies; median sample size 201
neonates [IQR: 341]), placental tissue (5 studies;
median sample size 236 neonates [IQR: 38]), and/
or buccal cells (2 studies; 236 and 53 neonates).
The neonatal tissues were sampled within 72 h
after birth in all studies, except by Cardenas et al.
(2019), who also collected blood from children
aged 3-5y and 7-11 y [29]. All studies adjusted
for potential covariates and/or confounders in
their statistical analyses or by design, but the num-
ber of variables under consideration differed
greatly (Supplementary Table S3). The covariates
most frequently accounted for were maternal age
(n = 16), smoking during pregnancy (n = 13),
infant sex (n = 12), gestational age (n = 10), and
folate use in pregnancy (n = 10).

In addition to the epigenetic outcomes, several
studies reported phenotypic outcomes in children,
specifically poor foetal growth (n = 1) [33], birth
weight (n = 2) [31,34], severity of neonatal absti-
nence syndrome (n = 1) [34], ADHD (n = 1) [35],
stress reactivity (n = 2) [36,37], and soothability
(n = 1) [38] (Supplementary Table S4). One study

performed a mediation analysis of medication
exposure, epigenetic modification, and neonatal
phenotypic outcome [37]. This study assessed
whether the DNAm of a CpG in the placental
NR3C2 gene acted as a mediator of the effect of
maternal depressive symptoms on cortisol reactiv-
ity in 12-month-old infants [37]. The effects of
maternal depression on cortisol levels were
decomposed into direct effects and DNAm-
mediated indirect effects, finding that, although
the indirect effect of DNAm was positive, it did
not overcome the larger negative direct effect of
depressive symptoms on infant cortisol levels [37].
However, the analysis demonstrated an increased
DNAm at the NR3C2 CpG upon in utero antide-
pressant exposure, suggesting that maternal anti-
depressant use during pregnancy enhances the
indirect effect of NR3C2 DNAm on the infant
stress response [37].

All EWASs used the Illumina platform [39] to
assess DNAm with the MethylationEPIC (n = 2),
HumanMethylation 450 (n = 3), or
HumanMethylation 27 (n = 4) bead chips. To
assess the association between CpG DNAm and
medication exposure, the majority of the EWASs
used linear regression models (#n = 6). In most of
the EWASs, a result was considered significant if
the false discovery rate (FDR) adjusted p-value was
<0.05 (n = 8), except for one study that used an
FDR adjusted p < 0.1 [32].

In the candidate gene studies, several meth-
ods were used to investigate DNAm: the
[lumina platform (n = 1) [33], the
SEQUENOM MassARRAY EpiTYPER platform
(n = 3), and the PyroMark system (n = 7). The
studies reported the methylation percentages
(n = 6), mean methylation percentages of tri-
plicates (n = 4) or the B value from the
[Nlumina microarray (n = 1) [33]. Various sta-
tistical tests were applied to assess differential
DNAm. For these tests, three studies used FDR
adjusted p-values (p < 0.25 in one study;
p < 0.05 in two studies), two studies used the
Bonferroni-corrected p-value, and the last six
studies applied an unadjusted p < 0.05.
Further details on the studies are available in
Tables 1 and 2. For excellent discussions of
statistical approaches in epigenetic studies, we



recommend the recently published reviews by
Teschendorff and Relton [40], van Rooij et al.
[41], and Mansell et al. [42].

Results of prenatal medication exposure and
neonatal DNA methylation

The most examined medication group in prenatal
pharmacoepigenetics was antidepressants, investi-
gated in 12 studies of 3,320 neonates (2 EWASs, 8
candidate gene studies, and 2 studies combining
an epigenome-wide and a candidate gene
approach). In the most recent EWAS, Cardenas
et al. [29] discovered 130 differentially methylated
CpGs in cord blood samples collected from neo-
nates exposed to antidepressants in utero. One of
these sites that mapped to ZNF575 was replicated
in an independent cohort [29]. Schroeder et al.
[43] found that the exposed neonates had two
differentially methylated CpGs in TNFRSF21 and
CHRNA4. However, the authors disregarded these
findings as false positives considering the small
effect sizes (DNAm changes of 1-3%) [43]. In
the EWAS conducted by Gurnot et al. [31], three
CpGs were differentially methylated in neonates
prenatally exposed to serotonin reuptake inhibi-
tors (SRIs; CYP2El, EVAIl, and SLMAP).
However, in the EWAS by Non et al. [32], no
CpGs were significantly different in neonates
exposed to selective serotonin reuptake inhibitors
(SSRIs) in utero.

The candidate gene studies investigated CpGs in
a total of 32 different genes (Supplementary Table
S6). Most of the included genes were chosen based
on their suggested association with psychiatric dis-
orders (e.g., the serotonin transporter gene
SLC6A4) [32,38,44], stress reactivity (e.g., the glu-
cocorticoid and mineralocorticoid receptor genes
NR3C1 and NR3C2) [32,36,37,45], or adverse early
life events (e.g., the brain-derived neurotrophic
factor gene BDNF) [32,44]. In the studies combin-
ing epigenome-wide and candidate gene
approaches [31,32], the candidate gene investiga-
tion was used to verify the epigenome-wide results.
However, except for the verification of CYP2EI
DNAm by Gurnot et al. [31], neither of the
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significant genes in either of the candidate gene
studies were also significant in the EWASs of
antidepressants.

Four genes involved in neurotransmitter recep-
tor or transporter activity (NR3CI, SLC6A4, and
FKBP5) or neuronal differentiation (BDNF) were
investigated across several studies (Table 3). The
DNAm of neither NR3CI nor BDNF was asso-
ciated with prenatal exposure to antidepressants
in any of the studies investigating these genes
[32,36,37,45]. For SLC6A4, the results were contra-
dictory. Although Gartstein et al. [38] found an
increase in DNAm at six CpGs in cord blood upon
prenatal SSRI exposure, Non et al. [32] reported a
decrease in DNAm at one CpG in cord blood
upon prenatal SSRI exposure when examined by
pyrosequencing but not in the epigenome-wide
approach. Finally, Devlin et al. [44] found no
association between in utero exposure to SSRIs or
serotonin and noradrenaline reuptake inhibitors
(SNRIs), and DNAm of SLC6A4 in cord blood. A
CpG in FKBP5, which encodes a co-regulator of
the glucocorticoid receptor, was negatively asso-
ciated with in utero SSRI exposure in cord blood
[32], but not in the placenta [33]. In summary, the
results of studies on prenatal antidepressant expo-
sure and DNAm are largely inconsistent.

Prenatal AED exposure was investigated in two
EWASs [46,47], which reported discrepant results.
Emes et al. [46] found no global DNAm differ-
ences in the cord blood of neonates exposed to
AEDs in utero, whereas Smith et al. [47] observed
decreased global DNAm in the cord blood of neo-
nates prenatally exposed to AEDs and no global
DNAm  differences in  placental tissue.
Furthermore, Emes et al. [46] reported differential
DNAm at 662 CpGs when comparing cord blood
from neonates that were exposed and not exposed
to AEDs in utero, whereas Smith et al. [47] found
14 CpGs with significantly reduced DNAm in the
same tissue, including three CpGs that were also
significant in placentae.

Two EWASs examined the association between
in utero paracetamol exposure and DNAm in pla-
centae [48] or cord blood [35]. Addo et al. [48]
reported 24 differentially methylated CpGs in pla-
cental tissue when comparing exposed and
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unexposed pregnancies. Using a different study
design, Gervin et al. [35] compared DNAm in
long-term paracetamol-exposed children with
ADHD to short-term-exposed children with
ADHD (2,089 differentially methylated CpGs),
unexposed children with ADHD (192 differentially
methylated CpGs), and unexposed children with-
out ADHD (6,211 differentially methylated CpGs).
Although the studies report vastly different num-
bers of significant CpGs, both Gervin et al. [35]
and Addo et al. [48] concluded that prenatal para-
cetamol exposure may be associated with DNAm
in cord blood from susceptible individuals or pla-
centae, respectively.

Yeung et al. [30] investigated the association
between prenatal acetylsalicylic acid exposure and
DNAm in cord blood. In the randomized con-
trolled trial, women were randomly assigned to
receive 81 mg of acetylsalicylic acid or placebo
every day until conception (within six menstrual
cycles) and during pregnancy [49]. The DNAm of
one CpG (3,500 base pairs upstream of the
POU4FI promoter) in cord blood was significantly
associated with prenatal exposure to acetylsalicylic
acid [30]. However, Yeung et al. concluded that
the association of prenatal acetylsalicylic acid
exposure with DNAm in cord blood is negligible,
as only one CpG with a minor effect size (1%
increase in CpG DNAm) was discovered in their
association study [30].

In the EWAS on prenatal methadone exposure,
McLaughlin et al. [34] reported a significant
increase in buccal cell DNAm of ABCBI, CYP2De,
and OPRMI in neonates of mothers who were
methadone-maintained during pregnancy. The
authors argued that their results demonstrated
that opioids interact with epigenetic mechanisms,
and that the altered DNAm of the opioid metabo-
lism-related genes may have a functional signifi-
cance that needs further investigation [34].

Discussion

In this review, we have systematically summarized
the literature investigating associations between
prenatal medication exposure and epigenetic dif-
ferences in neonates. We included a total of 18
studies on DNAm, examining in utero exposure to
antidepressants, AEDs, paracetamol, acetylsalicylic
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acid, or methadone. We found substantial incon-
sistency across studies, including heterogeneity in
methodology, materials, design, genome coverage,
and statistical modelling, making the interpreta-
tion of findings and cross-study comparisons chal-
lenging. The novelty of the field combining
epidemiological and pharmacoepigenetic methods
may partly explain this heterogeneity due to a lack
of consensus on how to perform analyses and
report findings. Therefore, we discuss the results
of the reviewed studies with respect to both epide-
miological and epigenetic considerations, and sug-
gest 10 recommendations for future studies in
prenatal pharmacoepigenetics, as summarized in
Box 1.

Prenatal pharmacoepigenetic candidate gene
studies should have a clearly defined hypothesis
guided by teratological principles [50] and phar-
macological, epidemiological, and biological
knowledge (pt. 1, Box 1). Founding the research
question on a well-informed hypothesis is funda-
mental for a transparent and well-designed prena-
tal pharmacoepigenetic study. This was mostly
done in the candidate gene studies included in
this review, which provided a rationale for select-
ing the genes being studied, such as the gene being
related to psychiatric disorders (the serotonin
transporter gene SLC6A4) [32,38,44] or stress
reactivity (the glucocorticoid and mineralocorti-
coid receptor genes NR3CI and NR3C2)
[32,36,37,45].

Small molecular and structural differences
between drugs are known to cause variations in
toxicity and teratogenicity [50]. Although the
reviewed studies on analgesics focused on one
specific medication [30,34,35,48], the studies on
psychotropics investigated the effect of medication
classes on neonatal DNAm [29,31-33,36-38,43—
47,51,52]. In the two studies on AEDs [46,47],
several medications were investigated, which may
be too broad considering the various different
pharmacological [53,54] and epigenetic mechan-
isms of action of AEDs [21,55,56]. For example,
Smith et al. [47] jointly analysed seven different
AEDs among 53 women, but also performed a
stratified analysis of carbamazepine monotherapy
(36 women). In contrast, Emes et al. [46] jointly
analysed valproate, lamotrigine, and carbamaze-
pine among nine women, and did not stratify
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Hypothesis Q @ Tissue selection

Medication E X Longitudinal
»

selection perspective
Statistical 220 :ﬁ Data
power " "" [0 ) integration
Study design 8 t-®  Causal
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(2]
Systematic
" error (CJ) ’ Replication

Box 1. (1)HYPOTHESIS: candidate gene studies should use a plausible hypothesis to guide the study design Hypotheses should be
defined prior to designing a candidate gene study, and be guided by principles of teratology, knowledge of pharmacological
mechanisms, and epidemiological and biological observations. Hypothesis-free EWASs are also important as the field of prenatal
pharmacoepigenetic studies is still emerging.

(2)MEDICATION SELECTION: investigate individual medications rather than medication classes Unless the pharmacological and
epigenetic mechanisms of action of medications are expected to be similar across the medication class, medications should be
analysed on an individual substance level.

(3)STATISTICAL POWER: ensure sufficient sample sizes to detect relevant DNAm differences To detect biologically relevant DNAm
associations and to ensure valid interpretation of the results, tools developed for power assessments in epigenetic studies should be
used when planning such studies.

(4)STUDY DESIGN: include a disease comparison group to disentangle medication from indicationStudies should include a disease
comparison group to better differentiate the effects of exposure to medication from the underlying maternal disease. This may
reduce the impact of confounding by indication.

(5)SYSTEMATIC ERROR: assess selection bias, information bias, and confounding Selection bias should be assessed by comparing
characteristics of study samples to the target population. The validity of medication exposure, neonatal phenotype, and other
covariates should be reported, and information bias and misclassification addressed. Measured confounders of the exposure—
outcome association(s) are to be adjusted for and residual confounding investigated. Importantly, cell type heterogeneity should be
considered a confounding factor in epigenetic studies.

(6)TISSUE SELECTION: biomarkers and extrapolation of DNAm patterns across tissues If the research aim is not only to report a tissue-
independent biomarker, but to extrapolate results to other target tissues, the limitations of such translation should be recognized,,
and reduced using software applications or data sets on cross-tissue correlations of modifications.

(7)LONGITUDINAL PERSPECTIVE: assess persistence of DNAm patterns throughout childhoodThe follow-up of epigenetic patterns
later in childhood is essential to assess the relevance of these changes over time, as they may suggest a long-term impact on the
phenotypic outcome.

(8)DATA INTEGRATION: integrate epigenetic data with complementary omics datalntegration of complementary omics data, such as
genomic and transcriptomic data, can strengthen functional and causal inferences of the findings.

(9) CAUSAL INFERENCE: provides a framework for interpreting exposure-outcome associations Causal inference methods, such as
two-step Mendelian randomization, may support the inference of causation from exposure—outcome associations, including how
medication may impact phenotypic outcome via DNAm changes. Importantly, the underlying assumptions of causal methods are
often untestable and, therefore, such methods should be used carefully.

(10)REPLICATION: replicate findings using different methods and independent cohorts Replication both across methods and in
independent cohorts is essential to increase the validity of the findings and the generalizability of the results to enhance clinical
relevance.

their analyses on individual medications. Analyses  medications rather than medication classes and
on a medication class level may mask effects or  ensure sufficient study power to do this (pt. 2 &
give heterogeneous results that are difficult to  pt. 3, Box 1).

interpret. Consequently, prenatal pharmacoepige- The median sample size of the reviewed studies
netic studies should aim to investigate individual = was 201 (IQR of 289), with sample sizes as low as



FKBP5
Regulator of the glucocorticoid receptor

BDNF
Brain-derived neurotrophic factor

N.S.

SLC6A4
Serotonin transporter

NR3C1
Glucocorticoid receptor
N.S.

N.S.

Oberlander et al. (2008) [36]

TOTAL STUDIES
'+t significantly increased DNAm level in medication-exposed group; " significantly decreased DNAm level in medication-exposed group; ‘N.S.": no significant difference between the medication-exposed

Galbally et al. (2020) [37]
Mansell et al. (2016) [45]
Gartstein et al. (2016) [38]
Ciesielski et al. (2015) [33]
Non et al. (2014) [32]
Devlin et al. (2010) [44]
and non-exposed groups.

Table 3. Overview of genes examined in more than one candidate gene study on antidepressants.
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18 [46] and 23 [31]. None of the studies reported a
power assessment to justify the selected sample
size. The power of an EWAS depends on many
variables, including the significance level, effect
size, sample size, array technology, tissue type,
and distribution of DNAm differences [57].
Therefore, power calculations are challenging, but
simulation studies for power estimation [42,58,59],
as well as power assessment tools [42,57], may
support the investigation of power in epigenetic
studies. In epigenetic epidemiology, the effect sizes
are expected to be small, ranging from 0.05 to
0.1 and upwards [60,61], as evidenced in studies
on prenatal smoking exposure, with effect sizes
commonly ranging from 0.02 to 0.1 [62,63]. We
recommend that future prenatal pharmacoepige-
netic studies perform and report power assess-
ments in order to ensure sufficient power to
detect genuine epigenetic differences between
comparison groups (pt. 3, Box 1).

The indication for medication use is an impor-
tant potential confounder in prenatal pharmacoe-
pigenetic studies, as the observed outcome may be
associated with the underlying maternal illness
and not the medication used to treat it [64,65].
Among the 14 studies on psychotropics in this
review, only eight studies included such a compar-
ison group [29,32,33,36,37,44,51,52]. Notably,
seven of these studies found an association
between the underlying maternal depression and
DNAm in the neonate [29,32,33,36,37,44,51],
emphasizing the importance of including this
comparison group in future prenatal pharmacoe-
pigenetic studies (pt. 4, Box 1).

When defining medication-exposed comparison
groups, more than half of the reviewed studies
relied partly or entirely on self-reported medica-
tion use during pregnancy [29,35,37,38,43,45-
48,51]. This measure does not necessarily reflect
the actual medication use [66-68] and is vulner-
able to recall bias if reported retrospectively [69].
In five studies, medication exposure was assessed
at birth using maternal and/or neonatal blood
concentrations of the medication [31,34,37,47,51].
Although informative at birth, this measure does
not reflect medication use in earlier stages of preg-
nancy. Similarly, the eight studies investigating the
association between DNAm and neonatal pheno-
typic outcomes included various outcome
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definitions without assessing the validity of the
measurement [31,33-38,46]. In five studies, data
were measured objectively (birth weight [31,33,46]
and cortisol levels [36,37]), whereas two studies
relied on diagnoses by specialists [34,35], and one
study used parent reports on infant temperament
[38]. An assessment of medication exposure, neo-
natal phenotype, and covariates is crucial to avoid
misclassification. Therefore, we recommend that
future prenatal pharmacoepigenetic studies per-
form sensitivity analyses to assess the robustness
of the findings, taking into account the validity of
the measures (pt. 5, Box 1). For example, methods
to quantify the impact of exposure and outcome
misclassifications, such as probabilistic bias analy-
sis [70], are highly recommended [64].

A wide range of different covariates were con-
sidered in the studies (Supplementary Table S3).
Selecting an appropriate set of confounders to
control for is critical to avoid systematic bias (pt.
5, Box 1). Ten studies selected confounders by
assessing associations between covariates, expo-
sure, and outcome [31,33,34,36-38,45,46,51,52].
We suggest to control for covariates that are
assumed to be confounders, ie., covariates that
are not part of the causal path, and that are both
a cause of the exposure and the outcome.
Therefore, the covariates to be accounted for
should occur upstream of the prenatal exposure,
while mediators (which are part of the causal path-
way) should not be accounted for when investigat-
ing the total effect of the exposure on the outcome.
The specific covariates to be taken into account
need to be assessed for each individual study, as
the relevance of the covariates depends on several
factors (e.g., study design and tissue type), and
include both technical covariates related to labora-
tory procedures and biological covariates.
Examples of biological covariates to be evaluated
are maternal age, smoking during pregnancy,
infant sex, gestational age, and folate use in preg-
nancy, which were the covariates most commonly
accounted for in the studies included in this review
(Supplementary Table S3). To this end, future
prenatal pharmacoepigenetic studies may also ben-
efit from implementing causal inference tools,
such as directed acyclic graphs (DAGs) [71], to
identify a sufficient set of confounders for adjust-
ments [64]. Such investigations «can be

complemented by assessing whether the selected
confounders largely capture the model variability,
as was performed by surrogate variable analysis in
Gervin et al. [35], and by principal component
analyses in Addo et al. [48] and Cardenas et al.
[29]. For an excellent overview of a general
approach to identify relevant confounders in
observational studies, please refer to the review
by VanderWeele [72].

The majority of the reviewed studies were based
on cord blood, which consists of cells exhibiting
cell type-specific DNAm patterns [40]. Therefore,
prenatal pharmacoepigenetic studies should con-
sider whether DNAm differences associated with
medication exposure reflect variation in constitu-
ent cell types, which are known to mediate or
confound the exposure associations [40,73].
When investigating cell-type proportions as a
mediator, in order to assess the direct effect of
medication exposure on associated DNAm differ-
ences, it may be necessary to adjust for estimated
or measured cell-type composition (see, e.g., Liu et
al. [74] and Gervin et al. [75]). However, if the
total effect of medication exposure on DNAm is
more interesting, for instance when searching for
potential biomarkers of a phenotypic outcome, the
cell-type composition should not be accounted for,
as it may remove relevant DNAm-phenotypic out-
come associations (see, e.g., Ollikainen et al. [76]).
Cell type composition may act as a confounder
when assessing the extent to which DNAm med-
iate the effect of drug exposure on a phenotypic
outcome, and should in such instances be
accounted for [73]. In summary, variation in cell-
type composition confers an important covariate
in epigenetic studies, and should be appropriately
evaluated [40,60,73,77]. Surprisingly, only six of
the reviewed studies considered cell-type composi-
tion in their analyses [29,30,35,45,48,52], empha-
sizing the need for increased awareness among
prenatal pharmacoepigenetic researchers to evalu-
ate cell types in future studies (pt. 5, Box 1). There
are several different methods to determine and
account for the cell-type composition in tissue
samples, and these are extensively described in
the excellent recent review by Teschendorff and
Relton [40].

Among the reviewed records, eight studies
hypothesized an association between DNAm and



neonate phenotypes [31,33-38,46], including five
studies concerning brain-related phenotypic out-
comes [34-38]. However, DNAm in peripheral
surrogate tissues does not necessarily resemble
DNAm in the target tissue [78-80], which chal-
lenges the accuracy of the extrapolation of the
findings. Although this limitation was acknowl-
edged in most studies [29-32,35-38,43-
45,47,48,51], only one study attempted to reduce
the constraint by including a correlation analysis
of select CpGs across adult whole blood and brain
tissue [29]. Importantly, investigation of peripheral
tissues is still considered valuable, since biomar-
kers of maternal disease or child developmental
outcomes do not need to be from the relevant
tissue (i.e., do not need to be tissue-specific).
However, to realize the ultimate aim of prenatal
pharmacoepigenetics of gaining direct mechanistic
insights into how medication exposure impacts the
foetus with potential phenotypic consequences,
future studies should validate tissue extrapolation
by, for example, investigating cross-tissue correla-
tions in available databases [61,81-85] (pt. 6, Box
1). Yet, current databases are mostly available on
adult tissues, limiting the relevance to prenatal
pharmacoepigenetic studies. Researchers have
been calling for initiatives to develop biobanks of
foetal and child brain specimens, while also taking
into account the ethical issues of building such
biobanks [86].

Only one of the reviewed studies investigated
DNAm patterns longitudinally during childhood,
finding that DNAm at a CpG in ZNF575 persisted
into early childhood [29]. Though investigating
the DNAm at birth provides information on the
immediate impact of prenatal medication expo-
sure, the follow-up of epigenetic patterns later in
childhood is valuable to assess the persistence over
time and increase the clinical relevance of the
findings (pt. 7, Box 1).

The clinical relevance of prenatal pharmacoepi-
genetic research may also be strengthened by func-
tional and causal interpretations of the results.
Using a multi-omics approach with integration of
omics data (e.g., genomics, epigenomics, and tran-
scriptomics data) [87] could substantiate the epi-
genetic findings (pt. 8, Box 1). However, the
reviewed studies only used single omics data (i.e.,
epigenomics). Although single omics data are
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potentially useful both as biomarkers and in pro-
viding insight into biological pathways, this is lim-
ited to correlations or associations often reflecting
reactive, rather than causative, processes. We
recommend that future studies include additional
omics data, as this may enable (i) investigation of
the functional consequences of DNAm on gene
expression [40], (ii) adjustment for the genetic
variation associated with DNAm variation [88-
90], and (iii) utilization of genomic methylation
quantitative trait loci (mQTLs) to implement cau-
sal inference methods, such as two-step Mendelian
randomization [40,91] (pt. 9, Box 1). There are
several openly accessible resources making omics
data available for integration, as thoroughly
reviewed by Walton, Relton and Caramaschi [92].

Causal modelling and reasoning are increasingly
being applied in genetic epidemiology to
strengthen the ability to make causal inferences
about associations, but it is still new to the field
of pharmacoepigenetics [40,64]. For example, two-
step Mendelian randomization [91,93-95] has
been used to assess how DNAm can mediate an
association between prenatal exposure and pheno-
typic outcomes in children [96,97]. Notably, only
one reviewed study attempted to make causal
inferences about an association between prenatal
antidepressant exposure, cord blood DNA, and
infant stress reactivity in a mediation analysis
[37]. We foresee important advances in future
prenatal pharmacoepigenetic studies using the
causal inference framework (pt. 9, Box 1).
Importantly, the causal models rely on assump-
tions that need to be met for them to be valid
[98]. As these assumptions are often untestable
[98], careful use of the causal inference framework
in pharmacoepigenetic studies is essential.

Lastly, to validate findings, replication using a
different technology and in an independent cohort
is essential, both to determine the robustness of
the associations and to assess the level of technical
and biological variation. Notably, only two of the
reviewed studies applied more than one method to
assess DNAm [31,32], and only one study
attempted to validate their results in an indepen-
dent cohort [29], emphasizing the need for an
increased focus on replication in prenatal pharma-
coepigenetics (pt. 10, Box 1). Several multi-cohort
consortia to enable replication of studies are
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already in place, such as the Pregnancy and
Childhood Epigenetics consortium (PACE) [99].

Conclusion

Investigating the potential effects of pharmacolo-
gical treatment in pregnancy is essential to estab-
lish foetal epigenetic safety, understand the
underlying mechanisms, and recognize the clinical
consequences for the offspring. However, studies
on prenatal medication exposure and epigenetic
changes are largely heterogeneous and inconsis-
tent. To improve the quality, comparability, and
interpretability of future prenatal pharmacoepige-
netic studies, we propose 10 recommendations
bridging the fields of prenatal epidemiology and
epigenetics. Epidemiological approaches and cau-
sal inference frameworks will reduce systematic
bias and improve our ability to interpret expo-
sure—outcome associations, including how medica-
tions may impact phenotypic outcomes via
changes in DNAm. Furthermore, it is essential to
consider the persistence of DNAm patterns over
time and the potential for cross-tissue extrapola-
tion when assessing the biological relevance of the
epigenetic contribution. Importantly, integrating
more omics data and implementing two-step
Mendelian randomization can strengthen the
functional and causal inferences of the findings.
In conclusion, a consensus on how to perform and
report prenatal pharmacoepigenetic studies will
fuel the development of the field and contribute
to future high-quality studies of clinical relevance.
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