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Transcriptomic signals 
in blood prior to lung cancer 
focusing on time to diagnosis 
and metastasis
Therese H. Nøst1*, Marit Holden2, Tom Dønnem3,4, Hege Bøvelstad5, Charlotta Rylander1, 
Eiliv Lund1,6 & Torkjel M. Sandanger1 

Recent studies have indicated that there are functional genomic signals that can be detected in 
blood years before cancer diagnosis. This study aimed to assess gene expression in prospective blood 
samples from the Norwegian Women and Cancer cohort focusing on time to lung cancer diagnosis and 
metastatic cancer using a nested case–control design. We employed several approaches to statistically 
analyze the data and the methods indicated that the case–control differences were subtle but most 
distinguishable in metastatic case–control pairs in the period 0–3 years prior to diagnosis. The genes 
of interest along with estimated blood cell populations could indicate disruption of immunological 
processes in blood. The genes identified from approaches focusing on alterations with time to 
diagnosis were distinct from those focusing on the case–control differences. Our results support that 
explorative analyses of prospective blood samples could indicate circulating signals of disease-related 
processes.

Lung cancer is the most commonly diagnosed cancer (2.1 million new cases in 2018) and the leading cause of 
cancer death  worldwide1. In Norway, there were about 3200 new cases of lung cancer in 2017 where around half 
were diagnosed in  women2. Among women, there is a high proportion of  adenocarcinomas3; approximately 80% 
of those diagnosed with known stage have metastasis at  diagnosis2,4; and survival is related to stage at  diagnosis2. 
The majority of these cancers is attributed to exposure to tobacco  smoke5, and the incidence rate of lung cancer 
in women in Norway has increased in recent  years2.

Understanding key molecular markers of lung carcinogenesis and identifying biomarkers for risk stratifica-
tion and early detection is essential for reducing lung cancer mortality. Several studies have successfully identi-
fied clinically relevant biomarkers in tumor or in blood at time of diagnosis, like EGFR mutations or PD-L1 
 expression6–11. Still, as earlier diagnosis is essential for improved prognosis, these markers should ideally be 
identified in a readily obtainable matrix at a time early in the progression of the malignancy.

Prospective study designs allow for exploration and characterization of early functional genomic events, and 
recent studies have indicated that there are such molecular signals in blood that can be detected years before 
cancer diagnosis. As exemplified for breast cancer, modulated trajectories in gene expression linked to breast 
cancer, especially related to metastatic cancers, have been identified in blood prior to the clinical  diagnosis12,13. 
Related to lung cancer, epigenetic markers that largely reflect past and current tobacco smoking have been estab-
lished as blood-based markers of lung cancer risk using prospective  designs14,15. Still, little is known regarding 
peripheral changes in gene expression prior to clinical manifestation of lung  cancer16.

Gene expression and other ‘omics data’ based on peripheral blood samples are influenced by the underlying 
distribution of white blood cells at the time of blood sampling, and algorithms can estimate the proportions of 
such cell populations. Considering that certain cell populations have been linked to elevated cancer  risks17, esti-
mated proportions of white blood cells in blood as well as their relative ratios could be related to future cancer 
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risk. Indeed, ‘omics data’, exemplified by DNA methylation data in blood, has been used to predict a neutrophil-
to-lymphocyte ratio (NLR) that was related to risk of several  cancers18–20.

This study aimed to identify transcriptomic signals in blood during years prior to lung cancer diagnosis. We 
also assessed differences in blood cell populations that were estimated from microarray data. To address the 
prospective design of the study, we employed several approaches to statistically analyze the data with focus on 
potential signals in samples donated closer to diagnosis and from metastatic cases.

Methods
The NOWAC cohort and the study participants. The Norwegian Women and Cancer study (NOWAC) 
is a nationally representative cohort study initiated in  199121. Women aged 30–70 years were randomly selected 
from the National Registry and invited to participate in the study through a mailed invitation letter to their 
home address that also included a detailed questionnaire. Women that agreed to participate have been followed-
up regularly with consecutive questionnaires. The questionnaires have covered self-reported anthropometry 
and lifestyle variables, including detailed information on past and concurrent smoking. Based on the questions 
related to smoking history, we constructed a comprehensive smoking index (CSI)22 as a stringent variable to rep-
resent smoking exposure. CSI scores were obtained using duration of smoking (dur; years), intensity (int; average 
number of cigarettes per day during years of smoking), and time since smoking cessation (tsc; years) and fitting 
the following model to our data: X2 = (1 − 0.5dur*/τ) (0.5tsc*/τ) ln(int + 1), where τ is the estimated half-life param-
eter, and δ is an estimated lag time parameter describing tsc and total duration as follows: tsc*  = max(tsc − δ, 0) 
and dur*  = max(dur + tsc − δ) − tsc* .

We conducted a case–control study nested within the NOWAC study among those participants who had 
donated a blood sample in 2003–2006 (N = 48,941)23. At the time of blood donation, the participants also filled 
out a one-page questionnaire covering information about recent and current smoking habits. Blood samples were 
donated at family doctors into RNA stabilizing PAXgene tubes that were sent by overnight mail to the Depart-
ment of Community Medicine, UiT, Tromsø, Norway. Upon arrival, tubes were frozen immediately at − 80 °C.

Through linkage with the Cancer Registry of Norway we identified 134 participants who had been diagnosed 
with lung cancer between 2004 and 2011, after they donated a blood sample. Thus, the time from blood donation 
to diagnosis ranged from 0.2 to 7.2 years. Of the 134 identified cases, 100 were diagnosed with metastatic cancer 
at the initial diagnosis. For each case, one cancer-free control was randomly drawn from NOWAC participants 
with available blood samples and matched on birth year and blood sample collection batch. All participants 
gave written informed consent and this study was approved by the Regional Committee for Medical and Health 
Research Ethics in Northern Norway and the Norwegian Data Inspectorate. The research has been conducted 
according to the principles expressed in the Declaration of Helsinki.

Microarray analytical methods and data preprocessing. Microarray service was provided by the 
Genomics Core Facility at the Norwegian University of Science and Technology (NTNU). Briefly, total sample 
RNA was isolated from the whole blood samples in PAXgene tubes using established  protocols24. Samples were 
analyzed using the IlluminaHuman HT-12 expression bead chips and Illumina GenomeStudio 1.9.0 was used 
to assess the quality of each array. Of the 268 samples analyzed, six case–control pairs were excluded due to 
laboratory quality measures before original probe values were background corrected using negative controls 
(R package limma: function nec)25. Further, probes reported to have poor quality from Illumina, no annotation 
or detected in < 10% of samples were removed and values were quantile normalized (R lumi:lumiN) and log2 
transformed (R lumi:lumiT)26. Annotation of preprocessed data was obtained using R lumi:nuID2RefSeqID and 
R illuminaHumanv4.db package. The statistical analyses were performed using 11,610 annotated and unique 
transcripts in 128 case–control pairs.

Estimations of white blood cell proportions in blood samples. We employed the deconvolution 
algorithm  CIBERSORT27 and the LM22 signature matrix to estimate the proportions of 22 white blood cell pop-
ulations (WBCs) in samples based on the gene expression profiles. Cell types with mean across all samples > 5% 
for the relative fractions were included in comparisons across case–control status, smoking status and periods of 
years to diagnosis. An NLR in each sample was calculated based on the fraction of neutrophils to the summed 
estimated proportions of lymphocyte (details presented in Table S1).

Data treatment and statistical analyses. Three different approaches were pursued to identify genes 
that were associated with case–control status, metastatic status and the time interval between blood sampling 
and the cancer diagnosis.

Exploratory methods assessing overall gene expression according to time to diagnosis. Differences in expression 
values in each case–control pair across time were explored using descriptive and exploratory methods described 
by Lund et al.12 and Holden et al.13. The differences according to time were evaluated using both predefined time-
dependent alterations (‘curve groups’ method; Lund et al.12) and alterations in moving windows in time (‘local 
in time statistics’ method; Holden et al.13). Specifically, the ‘curve group’ method designate genes in predefined 
groups of genes according to their respective means within three set time windows (days to diagnosis) where the 
value for each case–control pair is represented by their gene-wise difference in expression values. Six potential 
curve groups (‘123 = ’, ‘132 = ’, ‘312 = ’, ‘321 = ’, ‘213 = ’, ‘231 = ’) are predefined according 
to ranked average case–control difference in expression values within the time windows. In the dots provided 
here for illustration, diagnosis is to the right; Period 1 is closest to diagnosis and the number listed first is the 
respective period with the highest mean. For example, a gene with increasing differences in expression levels 
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between cases and controls when approaching time of diagnosis would be designated to the curve group ‘123’. In 
our data, the case–control differences were divided into the three predefined groups according to days to diagno-
sis for the case. To ensure similar numbers of cases in each time window we defined the following cutoffs: < 1093, 
1093–1783, 1783 < days. If there are more genes in a curve group than expected by chance, a time trend is con-
sidered  present12. The analyses were performed separately for metastatic case–control pairs which resulted in 36, 
31, 33 case–control pairs in the three set time windows, respectively. From these analyses, unranked lists of genes 
in the significant curve groups were extracted. The results are not presented for the non-metastatic groups due to 
the small number of case–control pairs in the three time windows (n = 7, 11, 10, respectively).

The ‘local in time statistics’ (LITS) method uses sliding time windows and the data set was divided into 
overlapping periods that each contained a set of 30 metastatic cases that were consecutive in time across the 
time to diagnosis (not performed for non-metastatic groups due to small number of case–control pairs). In this 
dataset, this division resulted in 71 time periods and each period duration ranged 475–1069 days. We focused 
on hypothesis testing of case–control differences for cases with metastasis according to time to diagnosis. The 
null hypothesis of the test was that the expectation for differences in log2 gene expression for the case–control 
pairs was zero for all genes in all time periods. The null distribution is estimated by permutation of the case and 
control status in each case–control pair. Detailed method descriptions are presented by Lund et al.12 and Holden 
et al.13. From these analyses, p-values from testing mean differences in log2 gene expression for case–control 
pairs across days from blood sampling until time of diagnosis using LITS are presented.

Gene‑wise tests examining potential case–control differences in subgroups. Differences in expression values 
between cases and controls were identified using linear models for microarrays (R limma)28. Linear regression 
models adjusting for the matched pairs were estimated for all subjects as well as restricted to (i) pairs where 
the case was metastatic, and (ii) metastatic cases sampled within 3 years prior to diagnosis, which is approxi-
mately overlapping the period represented by the time window closest to diagnosis in the curve group method 
described above. From these analyses, separate lists of the 100 genes with the lowest p-values were extracted 
(‘Top100 lists’). Additionally, separate regression models were estimated for the cumulated cases until each 
respective year of the interval between blood donation and diagnosis.

Gene‑wise tests exploring non‑linear differences according to time to diagnosis. Non-linear examinations of gene-
wise differences in expression levels according to time to diagnosis in cases adjusting for the matched pairs were 
explored using natural spline regression (3 degrees of freedom) and moderated F-tests for each gene (R limma). 
The regressions examined the difference in gene expression values for each transcript and each case–control pair 
(expression value for case minus value for control) across the time window from blood sampling to diagnosis 
of the case. Analyses were performed for all subjects as well as restricted to (i) metastatic case–control pairs and 
(ii) metastatic cases sampled within three years prior to diagnosis. From these analyses, separate lists of the 100 
genes with the lowest p-values were extracted (‘Top100 lists’).

Gene names, Entrez IDs, and accession numbers for genes in the identified lists from the different analyses 
were extracted using R packages lumi and org.Hs.eg.db. Lastly, the identified gene lists were compared between 
approaches mentioned above and functional explorations of molecular signatures as gene ontologies within each 
list were examined by overrepresentation analyses (R clusterProfiler)29.

Stratified analyses by histological subtypes (adenocarcinomas, squamous and small cell carcinomas) were 
not performed due to low sample sizes.

Case–control differences in proportions of WBCs including the NLRs estimated from gene expression values 
were assessed using regressions (including analyses restricted to all metastatic cases and the subgroup of meta-
static cases sampled less than three years prior to diagnosis). Further, we used regression splines to evaluate any 
non-linear trends in proportions of WBCs as well as NLR across years to diagnosis.

All statistical analyses were performed using  R30 and open source packages from R and the Bioconductor 
project. Wilcoxon and Kruskal–Wallis tests were used to test for group differences.

Results
Characteristics of study participants. Characteristics of the NOWAC participants are summarized in 
Table 1. There were more current smokers at blood sampling among cases (63%) as compared to among controls 
(32%). Table 2 presents the distribution of cases according to case, metastasis, histological subtype and smoking 
status across years between blood sample donation and cancer diagnosis.

Signals in estimated white blood cell compositions. The most prevalent populations of WBCs were 
neutrophils, CD8 T cells, and monocytes (Table 3). The proportions of neutrophils as well as NLRs were higher 
in cases as compared to controls (Fig. S1, Table 3). The NLR was also higher in metastatic cases as compared to 
their matched controls (Table S1) and the case–control difference was more pronounced when further restricted 
to metastatic cases and controls within 3 years of the diagnosis. Still, it appeared that the change was occurring 
among controls rather than cases. The proportions of resting NK cells were lower in current smokers as com-
pared to former or never smokers (Fig. S2, Table 3) and the mean NLR was similar across smoking categories 
(Table S1). Assessed in cases only, there were differences in proportions of monocytes across years to diagnosis 
as assessed by regression splines (Fig. S3, Table S2), but also among activated NK cells and macrophages M0. 

Exploratory assessments of signals across time for metastatic cases. Analyses of curve groups 
demonstrated that there were time trends for certain groups of genes in cases with metastatic cancer (p = 0.04; 
Table 4). Table 4 displays the number of observed and expected genes in each curve group. When testing whether 
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the differences within curve groups differed across time windows, it appeared that the differences were larger 
in time window closest to the diagnosis (Period 1; Table 4). An illustration of the curve groups that appeared 
significant, ‘123’ and ‘321’, is presented in Fig. 1.

Local in time statistics analyses of differences in  log2 gene expression for metastatic case–control pairs with 
time to diagnosis demonstrated that p-values were lowest, although not significant, closest to diagnosis (in the 
days 1–651 before diagnosis; Fig. S4) but also in another period around 2000 days before diagnosis. Based on 
results of the curve group and local in time statistics methods, it appeared that for some genes, the distribution 
of differences in log2 normal values for each case–control pair was dependent on time to diagnosis.

Gene-wise examinations of non-linear trends according to time to diagnosis. No associations 
were found for case–control differences in gene expression according to time to diagnosis when explored using 
spline regression of all case–control pairs (Table S3) or in analyses restricted to metastatic case–control pairs 
(Table S4). The gene with the lowest p-value for a non-linear trend in the absolute case–control differences in 
gene expression according to time to diagnosis in cases was FGFR3 (Fig. S5), which was also among the genes 
with the lowest p-values when restricting the analyses to cases with metastasis and their matched controls. The 
magnitude and direction of the spline coefficients were not consistent among the genes with the lowest p-values.

Gene-wise assessments of differential expression among cases and controls. Considering a 
false discovery rate of 0.05, we identified no differences in gene expression between cases and their matched 

Table 1.  Characteristics of the NOWAC participants. SD standard deviation, CSI Cumulative smoking 
intensity.

Cases n = 128
Controls 
n = 128

Mean SD Mean SD

Participant characteristics

Age at blood sampling 56.6 4.0 56.6 4.0

Packyears 20.8 11.1 14.3 10.2

CSI 1.4 0.7 0.7 0.8

Age at diagnosis 60.5 4.2

Time to diagnosis 4.3 2.0

n % n %

Smoking status

Current 80 62.5 41 32.0

Former 35 27.3 36 28.1

Never 13 10.2 51 39.8

n %

Histological subtypes

Adenocarcinomas 62 48.4

Small cell carcinomas 25 19.5

Squamous cell carcinomas 19 14.8

Others 22 17.2

Table 2.  Number of cases according to years to diagnosis for all cases, metastatic cases, histological subtypes 
and smoking status.

Variable\years to diagnosis 0–1  > 1–2  > 2–3  > 3–4  > 4–5  > 5–6  > 6–7  > 7–8 Sum

All cases 15 17 11 18 25 26 10 6 128

Metastatic cases 12 14 10 11 21 19 7 6 100

Histological subtypes

Adenocarcinoma 5 7 5 10 12 16 4 3 62

Squamous or small cell 5 6 5 7 9 6 4 2 44

Other 5 4 1 1 4 4 2 1 22

Smoking status

Current smoker cases 10 12 8 11 15 16 4 4 80

Former smoker cases 5 3 2 5 7 8 4 1 35

Never smoker cases 0 2 1 2 3 2 2 1 13
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controls in the total study sample (n = 256, Table S5), or when restricting the sample to metastatic cases and their 
matched control (n = 200, Table S6). However, when further restricting the analyses to metastatic cases within 
the last three years prior to diagnosis (similar time period as that in the first curve group window), 27 genes were 
differentially expressed between cases and their matched controls (Table S7). Among the Top100 genes in the 
analyses including the total study sample, 65 were overlapping with the Top100 genes identified for the meta-
static case-controls. Among the Top100 genes in the analyses including the total study sample, 13 were over-
lapping with the 27 genes differentially expressed in the metastatic case–control pairs sampled within the last 
three years prior to diagnosis. The 100 genes with the lowest p-values in the analyses using all cases and controls 
(n = 256) are presented in Table S5. The corresponding list of genes for metastatic cases and paired controls and 
metastatic cases and paired controls sampled under three years before diagnosis are presented in Tables S6 and 
S7. The top four genes identified for case–control differences in the total study sample (TREM1, FGFR3, MUC1, 
LRRN3; Table S5) were assigned to curve groups 123, 213, 321, 213, respectively.

When analyzing all metastatic case–control pairs in subsets of accumulated cases 0–1 years, 0–2 years and 
0–3 years prior to diagnosis, zero, 61, and 27 genes were differentially expressed (FDR ≤ 0.05), respectively 
(Table 5). Among the genes identified for years 2 and 3, 20 genes overlapped (indicated in Table S7) and 14 of 

Table 3.  Summary statistics for the estimated proportions of white blood cell populations in the samples with 
p-values for tests of differences according to case–control status and smoking status. Median values for cases 
and controls in the subgroups analyzed and in smoking status groups are presented in Table S1. B cells naïve, 
dendritic cells activated, dendritic cells resting, eosinophils, macrophages M1, macrophages M2, mast cells 
activated, plasma cells, T cells CD4 memory resting, T cells follicular helper were estimated as not present in 
the blood samples. a p-value for Wilcoxon Rank Sum group test including all case control pairs (n = 128 pairs). 
b p-value for Wilcoxon Rank Sum group test including metastatic case control pairs (n = 100 pairs). c p-value 
for Wilcoxon Rank Sum group test including all case control pairs (n = 36 pairs). d p-value for Kruskal–Wallis 
group test including current (n = 121), former (n = 71) and never (n = 64) smokers. Bold values indicate values 
below 0.05

Cell population Median cases Median controls

Case–control pairs Smoking status

p-value  Alla p-value  Metab p-value Meta < 3  yearsc p-valued

Neutrophils 0.24 0.22 0.04 0.04 0.05 0.12

T cells CD8 0.18 0.2 0.48 0.58 0.12 0.38

Monocytes 0.18 0.18 0.91 0.86 0.17 0.65

T cells regulatory 0.12 0.12 0.4 0.28 0.38 0.81

T cells CD4 naive 0.09 0.09 1.00 0.65 0.90 0.28

NK cells activated 0.06 0.06 0.07 0.14 0.27 0.09

NK cells resting 0.06 0.06 0.89 0.84 0.43 0.01

T cells gamma delta 0.02 0.02 0.66 0.77 0.92 0.59

B cells memory 0.02 0.01 0.19 0.09 0.65 0.09

Macrophages M0 0.01 0.01 0.10 0.04 0.001 0.07

T cells CD4 memory 
activated 0.01 0.01 0.19 0.34 0.24 0.38

Mast cells resting 0.01 0.01 0.13 0.54 0.99 0.15

Neutrophils-to-lympho-
cytes ratios 0.65 0.55 0.04 0.08 0.01 0.05

Table 4.  The number of genes identified in curve groups for metastatic cases (n = 33, 31, 36 in the three time 
windows, respectively) and the associated p-values for testing curve groups overall and for each curve group 
separately in each time window. Period 1 is closest to diagnosis and the number listed first is the respective 
period with the highest mean. In the dots provided for illustration, diagnosis is to the right. Bold values 
indicate values below 0.05

Curve group No. of genes (expected no of genes)

p-values

Each curve group overall Period 3 Period 2 Period 1

Global 4880 (2606) 0.04

123  654 (430) 0.17 0.33 0.29 0.02

132  886 (438) 0.10 0.74 0.46 0.40

312  873 (439) 0.10 0.38 0.53 0.37

321  465 (422) 0.28 0.30 0.22 0.01

231  969 (440) 0.08 0.22 0.81 0.21

213  1033 (436) 0.06 0.11 0.69 0.48
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Figure 1.  Curve group ‘123’ (upper panels; differences in gene expression values for cases and matched controls 
highest closest to diagnosis) and ‘321’ (lower panels; gene expression differences highest further from diagnosis) 
according to time to diagnosis. The left panels present spline-estimated curves for 20 randomly selected genes 
from each given curve group for illustrational purposes. The dashed, vertical lines indicate the last 2 years prior 
to diagnosis. In the middle panel the circles represent the differences in gene expression for each case–control 
pair for one randomly chosen gene, and the respective mean values in each time period are displayed in red and 
a spline-estimated curve with the gene expression differences for the same gene is displayed in black. The right 
panels display the same results as the middle panel but calculated for 20 genes.

Table 5.  Number of significant genes identified in analyses of metastatic cases according to years between 
blood sampling and diagnosis.

Year No. of cases (cumulated) FDR 0.05 FDR 0.1

 < 1 12 0 42

 < 2 26 61 279

 < 3 36 27 128

 < 4 47 0 0

 < 5 68 0 0

 < 6 87 0 0

 < 7 94 0 1

 < 8 100 0 0
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these were overexpressed in cases. Corresponding analyses are not presented for non-metastatic cancers (n = 28 
pairs) as the number of samples in each year were small.

When adjusting the regression analysis including all case–control pairs for CSI scores, four of the five genes 
with the lowest p-values were overlapping with the unadjusted results and test statistics were similar as in those 
from the unadjusted regressions (results not presented). For the hundred genes with lowest p-values in the CSI-
adjusted analyses, the overlap with the Top100 lists for the unadjusted analyses of all pairs, metastatic pairs, and 
metastatic pairs with < 3 years to diagnosis was 76, 58, and 23, respectively.

Comparing the identified genes related to time of lung cancer diagnosis and metastatic can-
cer. We identified seven lists of genes of interest: Top100 genes for case–control differences in the total study 
sample, the corresponding Top100 genes for metastatic case–control pairs, and the Top100 genes for metastatic 
case–control pairs in the last 3 years before diagnosis; the Top100 genes for non-linear associations with time 
to diagnosis in all cases and the corresponding Top100 genes for metastatic cases; and genes overrepresented 
in curve groups 123 and 321. For these lists, the overrepresentation analyses of gene ontology categories dem-
onstrated differences in categories among the different approaches (Fig. 2, Table S8) and included metabolic 
processes and cellular responses to stress (Fig. 2).

Discussion
Main findings. These exploratory analyses of microarray gene expression data in peripheral blood focusing 
on time-dependent processes in lung cancer cases and their matched controls indicated small differences in gene 
expression during the years prior to diagnosis. Overall, the methods indicated that case–control differences were 
most distinguishable in metastatic case–control pairs in the period 0–3 years prior to diagnosis. The genes and 
gene ontology categories identified from approaches focusing on alterations with time to diagnosis were distinct 
from those focusing on the case–control differences. The enriched processes included categories related to both 
metabolic processes and immunological responses. White blood cell populations in blood estimated from the 
gene expression values indicated that neutrophils and NLR might be disrupted in cases overall (independent of 
time to diagnosis) and that natural killer cells were lower in current smokers. Only few of the genes identified 
were among those that have been previously linked to tobacco exposure. Overall, the results could indicate dis-
ruption of immunological processes in blood of lung cancer cases and that there is a relation to time to diagnosis 
and metastatic cancer.

Figure 2.  Visualizations of biological processes within gene ontology categories for top lists of interesting 
genes indicated in the different approaches described in the results. The color scale indicates significance of the 
overrepresentation of genes and the gene ratio signifies the number of genes in each list relative to the number 
of genes in ontology categories. L designate the models examined using linear regression in the ‘limma’ package 
(‘L All’; n = 128 pairs); all pairs with metastatic cases (‘L Meta’, n = 100 pairs); and all pairs with metastatic 
cases sampled within three years prior to diagnosis (‘L Meta < 3 years’; n = 36 pairs), whereas S designate the 
spline regressions examined for all pairs and all pairs with metastatic cases using ‘limma’. For the significant 
curve groups identified, CG 123 and CG 321, the genes in the two significant curve groups were presented. 
Numbers in brackets signify the numbers of genes in each list with identified Entrez IDs that were included into 
the overrepresentation analyses. Graphical representation of ontologies were generated using the R package 
 clusterProfiler29.
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Exploring alterations with time to diagnosis. Of the different curve groups, the case–control differ-
ences were increasing and decreasing with time towards diagnosis in the curve groups ‘123’ and ‘321’, respec-
tively, and both gene groups indicated that the period closest to diagnosis (0–2 years) was when case–control dif-
ferences diverged the most. The LITS method indicated that the gene expression for cases and controls were most 
dissimilar in the periods around 2.5 in addition to around 4.6 years prior to diagnosis. The non-linear regres-
sions could have indicated diverging trajectories, but this approach did not indicate a specific period where case 
control differences were more pronounced nor were the direction of effect estimates consistent across top genes. 
When assessing differentially expressed genes when comparing cases and matched controls while restricting the 
analysis to cases diagnosed with metastatic cancers within two and three years of diagnosis, 61 and 27 genes were 
indicated, respectively (20 overlapped). Overall, case–control differences were more pronounced for metastatic 
cases and controls across the statistical approaches. When comparing all case–control pairs, no significant genes 
were indicated according to FDR adjusted p-values. In summary, exploring alterations with time in gene expres-
sion demonstrated that the magnitude of differences vary according to time to diagnosis.

Summarizing the different approaches, the period closest to diagnosis (approximately 0–3 years prior to 
diagnosis) was indicated as the period with the more pronounced case–control differences. This period could be 
expected based on knowledge of the progression of lung cancer disease. The lung cancer tumor grows for several 
 years31 and lung cancer diagnosis is preceded by many symptoms especially in the last year before diagnosis is 
 set32. A large Danish population-based study investigating trajectories across individuals prior to cancer diagnosis 
found that lung cancer had up to 30 prior disorders and that most of them accumulated 1–2 years prior to the 
cancer  diagnosis33. Thus, the detected alterations could be systemic signals related to lung cancer progression 
per se, or to any of the related diseases. The ontology categories identified for the included lists indicated several 
cellular processes, including categories related to both metabolic processes and immunological responses. These 
could indicate that the systemic signatures of exposure or disease-related processes are linked to these cellular 
processes in circulating white blood cells.

White blood cell composition. The proportions of macrophages were higher in metastatic cases as com-
pared to controls and the differences were more pronounced closer to diagnosis. Macrophages have been shown 
to be tumor promoting and present in  tumors34. Further, proportions of monocytes increased in all cases closer 
to diagnosis and such cells in blood samples have been related to lung cancer and presence of late stage  disease35. 
Still, the systemic presence and function of macrophages and monocytes prior to clinical manifestation of the 
disease is not clear. Although proportions of natural killer cells were not different across case–control compari-
sons, this cell type was associated with exposure to smoking as estimated proportions of natural killer cells were 
lower in current smokers, which is also observed from cell counts in  blood36,37. Of note, the differences in natural 
killer cells across smoking categories here correspond to the observation of estimated fractions based on DNA 
methylation in the same  samples38.

Elevated systemic inflammatory responses are important indicators of cancer development and  progression39,40 
and several immune cells in peripheral blood have been shown to have prognostic value for several  cancers17. The 
estimated proportions of neutrophils constituted a large fraction of WBCs in samples but was lower as estimated 
from gene expression than what is typical in  blood41,42 as well as estimated from DNA methylation in the same 
 samples38. Still, their proportions were higher in cases as compared to controls although there was no indication 
of enhanced differences among metastatic case–control pairs nor with time to diagnosis. The role of neutrophils 
in carcinogenesis is both pro-tumor and anti-tumor but it is also plausible that their increased presence in blood 
is a secondary inflammatory response to the  carcinogenesis41–43.

Related to the elevated proportions of neutrophils in cases as compared to their controls, the estimated NLRs 
were higher in cases. A higher NLR ratio in blood has previously been associated with poorer survival in lung 
cancer cases and thus an elevated ratio in blood samples from prospective cases could also be  expected35,42. Fur-
ther, NLRs derived from ‘omics data’ has indicated that an elevated NLR (estimated from DNA methylation data) 
was linked to increased risk of future lung  cancer19 and lower lung cancer  survival18,20. Thus, these observations 
support that there are systemic immunological responses detectable in blood prior to clinical cancer diagnosis, 
and that using ‘omics data’ as digital cytometry can be useful as predictive markers.

Indicated genes of interest. The different statistical approaches yielded different lists of top genes with 
variable degree of overlap. The genes identified from approaches focusing on time to diagnosis and metastatic 
cancer were distinct from those focusing on the case–control differences in all pairs. Among the 20 genes dif-
ferentially expressed in blood sampled within both 2 or 3 years prior to diagnosis in metastatic cases, F5, TLR5 
and C19orf59 have been previously observed differently expressed in whole blood of non-small cell lung cancer 
(NSCLC) patients compared to  controls44 in one study and SLC25A5 in another study of blood samples from 
NSCLC cases and  controls45. None of the 20 genes were among those 29 or 8 genes that were identified in blood 
drawn at diagnosis from patients with  NSCLC46 or  adenocarcinomas47, respectively. The 20 genes of highest 
interest in these prospectively sampled blood samples could indicate a specific gene profile in blood prior to lung 
cancer diagnosis, which would thus be different from those genes identified at diagnosis or later in the disease 
progression. Accordingly, the FGFR3 gene, a gene that has been linked to lung carcinogenesis and identified 
as a therapeutic  target11,48, was the gene with the lowest p-values in the spline regressions according to time to 
diagnosis but not when comparing case–control differences. Conversely, these 20 genes could also indicate a 
non-specific blood profile indicating systemic responses to any cancer developing. Still, the 20 genes indicated 
here were not among those 50 indicated in a profile related to later breast cancer in a similar prospective case–
control study related to breast cancer, also within the NOWAC  cohort24. Of note, genes of interest identified in 
blood and in matched tumor samples from the same persons has been compared for women with breast cancer 
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in the NOWAC cohort and the biological processes and expression patterns appeared to  vary49. The processes 
indicated in tumor samples were enriched for genes involved in hallmarks of cancer, while processes indicated in 
blood samples (sampled with the same protocol as this study) were enriched for either general cellular processes 
or specific immune responses. Thus, circulating profiles of samples in studies related to cancer appear to differ 
between cancer sites and differ from local molecular signals related to the developing tumor. Further assess-
ments focusing on time to diagnosis and cancer stage are warranted to assess whether disruption of expression of 
specific genes identified in prospective studies could contribute to risk stratification, diagnostic characterization 
or indicate genes as therapeutic targets.

To better explore whether the identified genes were linked to exposure to smoking we compared our genes 
of interest to a large previous meta-analyses of gene expression in 10,233  participants50. Three genes (MUC1, 
LRRN3, EIF1) among the ten genes with the lowest p-values in the comparisons of all case–control pairs were 
among those 1270 differently expressed genes observed when comparing current and never smokers in the 
meta-analyses. Further, among the hundred with the lowest p-values in the case–control comparisons in this 
study, fourteen (MGAT3, KCNMB1, ITGAX, ATP1B1, WDR61, PPP1R14B, ADAM23, NCF4, ALDH1A1, PDCD2, 
UQCRFS1, MAPRE2, AB11FIP1, GFRA2) were also identified in the meta-analyses. When investigating meta-
static cases under three years, none of the top ten were among the list linked to current smoking, but ten (MUC1, 
GSK3B, CD247, ASGR2, PYHIN1, NCF4, GK5, FAM43A, CYP1B1, ID2) of those 100 with the lowest p-values 
were linked to smoking in the meta-analyses50. Thus, the genes identified linked to lung cancer case–control 
status, especially when focusing on short time to diagnosis and metastatic cancer, have not been strongly linked 
to smoking in other populations.

The ontology categories indicated from each statistical approach differed considerably. Many ontology catego-
ries with the highest number of genes overrepresented indicated immunological functions and were identified 
from the lists from linear regressions of metastatic cases < 3 years prior to diagnosis and the spline regressions of 
all and metastatic case–control pairs. Both the estimated proportions of neutrophils, macrophages and monocytes 
as well as the ontology categories from genes of interest indicate disruption of immunological processes in blood 
and that there is a relation to time to diagnosis and metastatic disease for the magnitude of differences. Using 
blood ‘omics data’ to reveal characteristics of the immune system has been highlighted as part of the development 
of diagnostic biomarkers and personalized treatment  options51. Thus, genes identified in exploratory studies of 
blood transcriptomes could signify systemic signals of local diseases but as gene expression in blood samples to a 
large extend is influenced by white blood cells it is likely that signals reflect systemic immune responses. Further, 
blood transcriptome profiles have been shown to distinguish between several pulmonary  diseases44 and as the 
disease entails accumulation of many disorders in the time close to clinical  diagnosis33, signals as those in this 
study can represent interesting circulating markers during the development of lung cancer.

The approaches chosen. This study used descriptive, exploratory methods as well as common statistical 
approaches to explore how differences in gene expression in case–control pairs vary across time between blood 
sampling and lung cancer diagnosis. By focusing on the time aspects and metastatic cancers while considering 
the matched pairs, this study might have captured genes of interest that were not apparent from the methods 
focusing solely on the case–control differences and thus have indicated genes related to metastatic disease and 
dynamic processes. Further, the signals could indicate a period where perturbations start and indicate functional 
processes disturbed in blood. The curve group approach included hypothesis testing of curve trajectories while 
the LITS method is more flexible as it does not assume predefined trajectories. Adjustment of smoking was not 
feasible in the explorative methods, but when the baseline linear model was adjusted for CSI scores, the overall 
results did not change substantially. Using established methods in combination with new statistical methods, 
this study demonstrated subtle time-dependent changes in gene expression profiles in blood prior to clinical 
diagnosis.

Notably, the prospective case–control design of this study only allowed for investigations of changes in gene 
expression according to time to diagnoses that are common across different individuals. I.e. we assume diver-
gence in gene expression for different persons across time to diagnosis and is not a longitudinal sample although 
it was analyzed as such. Additionally, the interpretation of study findings are further hampered by the limited 
sample size of the study. Finally, the blood samples represent snapshots of the circulating immune cell activity 
and should be interpreted as such.

Conclusions
Combining approaches focusing on time to diagnosis and metastatic disease revealed distinct signals related 
to these features and the results could reflect systemic immune responses or disturbed distributions of blood 
immune cells. These results supported that genes of interest indicated in explorative analyses of prospective blood 
samples could potentially be linked to systemic signals of disease-related processes.

Data availability
The microarray data generated and/or analyzed in the current study could be accessed upon reasonable request 
to the originating cohort. Access will be conditional to adherence to local ethical and security policy. R codes 
used for the analyses presented in the paper are available upon request.
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