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A B S T R A C T   

Background: Prenatal exposure to toxic metals or variations in maternal levels of essential elements during 
pregnancy may be a risk factor for neurodevelopmental disorders such as attention-deficit/hyperactivity disorder 
(ADHD) and autism spectrum disorder (ASD) in offspring. 
Objectives: We investigated whether maternal levels of toxic metals and essential elements measured in mid- 
pregnancy, individually and as mixtures, were associated with childhood diagnosis of ADHD or ASD. 
Methods: This study is based on the Norwegian Mother, Father and Child Cohort Study and included 705 ADHD 
cases, 397 ASD cases and 1034 controls. Cases were identified through linkage with the Norwegian Patient 
Registry. Maternal concentrations of 11 metals/elements were measured in blood at week 17 of gestation; 
cadmium; cesium; cobalt; copper; lead; magnesium; manganese; selenium; zinc; total arsenic; and total mercury. 
Multivariable adjusted logistic regression models were used to examine associations between quartile levels of 
individual metals/elements and outcomes. We also investigated non-linear associations using restricted cubic 
spline models. The joint effects of the metal/element mixture on ASD and ADHD diagnoses were estimated using 
a quantile-based g-computation approach. 
Results: For ASD, we identified positive associations (increased risks) in the second quartile of arsenic [OR = 1.77 
(CI: 1.26, 2.49)] and the fourth quartiles of cadmium and manganese [OR = 1.57 (CI: 1.07 2.31); OR = 1.84 (CI: 
1.30, 2.59)], respectively. In addition, there were negative associations between cesium, copper, mercury, and 
zinc and ASD. For ADHD, we found increased risk in the fourth quartiles of cadmium and magnesium [OR = 1.59 
(CI: 1.15, 2.18); [OR = 1.42 (CI: 1.06, 1.91)]. There were also some negative associations, among others with 
mercury. In addition, we identified non-linear associations between ASD and arsenic, mercury, magnesium, and 
lead, and between ADHD and arsenic, copper, manganese, and mercury. There were no significant findings in the 
mixture approach analyses. 
Conclusion: Results from the present study show several associations between levels of metals and elements 
during gestation and ASD and ADHD in children. The most notable ones involved arsenic, cadmium, copper, 
mercury, manganese, magnesium, and lead. Our results suggest that even population levels of these compounds 
may have negative impacts on neurodevelopment. As we observed mainly similarities among the metals’ and 
elements’ impact on ASD and ADHD, it could be that the two disorders share some neurochemical and neuro-
developmental pathways. The results warrant further investigation and replication, as well as studies of com-
bined effects of metals/elements and mechanistic underpinnings.  
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1. Introduction 

Attention-deficit/hyperactivity disorder (ADHD) and autism spec-
trum disorder (ASD) are neurodevelopmental disorders that interfere 
with learning and normal functioning during childhood and adolescence 
(Antshel et al., 2016; Kern et al., 2015). ADHD is one of the most 
common, affecting approximately 3–4% of children globally (Polanczyk 
et al., 2014). This disorder is characterized by inattention, impulsivity, 
and hyperactivity, with common additional dysfunctions like compro-
mised motor skills and impaired cognitive functions (Polanczyk et al., 
2007). ASD in children has a prevalence of around 1% in the Nordic 
countries and in the United States (Hansen et al., 2015; Idring et al., 
2015; Sandin et al., 2014; Surén et al., 2012). ASD comprises hetero-
geneous disorders characterized by persistent deficits in social 
communication and social interaction, in addition to restricted and re-
petitive patterns of behavior, interests, or activities (American Psychi-
atric Association, 2013). Children with ASD have varied cognitive 
challenges and their intelligence scores can range from high levels to 
severe intellectual disability (Johnson & Myers, 2007). Childhood 
ADHD and ASD are more prevalent in boys compared to girls (Nuss-
baum, 2012; Polanczyk et al., 2007; Werling & Geschwind, 2013). While 
both disorders are to a large degree heritable, genetic factors are likely 
to interplay with environmental factors (Faraone et al., 2005; Nuttall, 
2017; Sandin et al., 2014; Thapar et al., 2017). 

During pregnancy, toxic metals such as lead and mercury are trans-
ferred from mother to fetus via the placenta (Grandjean & Landrigan, 
2006). As fetal brain development is extraordinarily sensitive to toxi-
cants, chemicals interfering with brain developmental processes may 
lead to neurodevelopmental deficits and related disorders during 
childhood, even at low exposure levels that may be considered safe for 
adults (Grandjean & Landrigan, 2014; Heyer & Meredith, 2017; Tran & 
Miyake, 2017). For many of these chemicals (e.g. lead), a safe exposure 
level with regards to neurodevelopment is yet to be determined 
(Grandjean & Landrigan, 2014; Tran & Miyake, 2017). 

Toxic metals such as mercury, lead, cadmium, and arsenic are 
naturally occurring in the environment (Järup, 2003; Tchounwou et al., 
2012). In addition, there is a ubiquitous distribution of toxic metals in 
the environment due to anthropogenic activities such as mining, burning 
of fossil fuels and extensive use in agriculture and manufacturing of 
products (Järup, 2003; Tchounwou et al., 2012). A number of these 
elements are known developmental neurotoxicants, including lead, 
mercury, arsenic, manganese, and selenium (Grandjean & Landrigan, 
2006). In addition, some are suspected as developmental neuro-
toxicants, for example cadmium (European Food Safety Authority, 
2009). Blood concentrations of metals and essential elements for preg-
nant Norwegian women are comparable to levels in other European 
countries (Caspersen et al., 2019; Haug et al., 2018), although the 
Norwegian levels seem to be somewhat higher for arsenic and mercury 
(Haug et al., 2018). For mercury, arsenic, and selenium, the predomi-
nant sources in the Norwegian population are fish and shellfish (Bir-
gisdottir et al., 2013; Papadopoulou et al., 2019), whereas multimineral 
supplements seem to be major sources for some essential elements such 
as manganese, copper, zinc, and also selenium (Caspersen et al., 2019). 
Exposure to toxic metals in human populations seems to be associated 
with socioeconomic position, with higher concentrations of mercury in 
women with higher education (Montazeri et al., 2019). Fish and seafood 
intake, which is a source of mercury, is also related to socioeconomic 
position, with higher consumption among those with higher educational 
level (e.g. Touvier et al., 2010). Higher cadmium levels have been re-
ported in women with lower education (Montazeri et al., 2019). There 
are also studies linking prenatal metal levels with sexually dimorphic 
placental transfer, potentially altered sex steroids, and/or sex-specific 
neurodevelopmental vulnerabilities (Baron-Cohen et al., 2019; Li 
et al., 2019; Wang et al., 2017; Werling & Geschwind, 2013). 

Few studies have investigated gestational levels of metals and 
essential elements and ADHD in offspring, and these mainly report not 

on ADHD diagnosis, but rather on levels of ADHD-related symptoms 
such as inattention, impulsivity, and hyperactivity assessed through 
parent- or teacher-reported rating scales (Kalkbrenner et al., 2014; 
Vrijheid et al., 2016; Yoshimasu et al., 2014). Some studies report higher 
levels of ADHD symptoms in children with increased prenatal exposure 
to mercury, lead, or cadmium (Boucher et al., 2012; Kim et al., 2020; 
Neugebauer et al., 2015; Plusquellec et al., 2007; Sioen et al., 2013). 
However, other studies report no associations with metals/elements (e. 
g. Patel et al., 2019; Forns et al., 2014). One study investigated prenatal 
exposure to selenium and manganese and ADHD diagnosis in children 
and found increased risk with the highest levels of selenium (Ode et al., 
2015). Most studies on prenatal metal/element exposure and ASD have 
investigated the impact of mercury exposure and report no associations 
(e.g. Golding et al., 2018; McKean et al., 2015; van Wijngaarden et al., 
2013; Yau et al., 2014). One study measuring metals in amniotic fluids 
found no associations between ten different metals and ASD diagnosis in 
children when metals were assessed individually, except for an inverse 
association with a factor containing copper (amongst other compounds) 
(Long et al., 2019). Another study did identify a positive association 
between prenatal mercury and autistic behaviors in children at five 
years of age (Ryu et al., 2017). Altogether, there is still limited knowl-
edge on prenatal exposure to metals or variations of maternal levels of 
essential elements and clinician-based ASD and ADHD diagnoses in 
childhood. In addition, there are inconsistencies regarding study designs 
and findings. 

The overall objective of the present study was to investigate associ-
ations between gestational levels of 11 metals and essential elements, 
individually and as mixtures, and childhood diagnosis of ADHD or ASD. 
In addition, we investigated effect measure modification by child sex 
and maternal education. 

2. Methods 

2.1. Study design and participants 

The current study is based on data from the Norwegian Mother, 
Father and Child Cohort Study (MoBa) and the Medical Birth Registry of 
Norway (MBRN) with linkage to the Norwegian Patient Registry (NPR). 
MoBa is a population-based pregnancy cohort study conducted by the 
Norwegian Institute of Public Health. Participants were recruited from 
all over Norway from 1999 to 2008 and are still being followed up. 
Among the invited women, 41% consented to participation. The cohort 
now includes 114,500 children, 95,200 mothers and 75,200 fathers 
(Magnus et al., 2016). Blood samples were obtained from both parents 
during pregnancy and from mothers and children (umbilical cord) at 
birth (Paltiel et al., 2014). The current study is based on version 12 of the 
quality-assured data files released for research in January 2019. The 
MoBa cohort is regulated under the Norwegian Health Registry Act. The 
NPR has approved the linkage between NPR and MoBa, identifying 
ADHD and ASD diagnostic cases. The current study was approved by The 
Regional Committees for Medical and Health Research Ethics (ref. no. 
2012/985-1). MBRN is a national health registry containing information 
about all births in Norway. The NPR is a national health care registry 
that receives patient data on diagnoses reported from all hospitals and 
specialized health care services in Norway. The registry contains di-
agnoses for in- and outpatients recorded from 2008 and onward. The 
diagnostic codes reported to the NPR are according to the International 
Statistical Classification of Diseases, 10th Revision (ICD-10). 

2.2. Cases and controls 

For both cases and controls we included children that were single-
tons, born in 2002 or later and alive at 2 years of age (controls only), had 
records available from the MBRN and prenatal MoBa questionnaire 1 
(~17 weeks’ gestation), with no registration in MBRN of Down’s syn-
drome or of serious malformation, and with available maternal whole 
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blood sampled at week 17 of gestation (Fig. 1). The total number of cases 
and controls in the present study was 705 ADHD cases, 397 ASD cases, 
and 1034 controls (Fig. 1). 

From the NPR, we obtained information on diagnosis of ADHD and 
ASD among children born in 2002 or later, because of the availability of 
data and biological samples. For ADHD, we selected cases if they had at 
least two registrations of “hyperkinetic disorder” (ICD-10 codes F90, 
F90.0, F90.1, F90.8, or F90.9) (World Health Organization, 1993). We 
required a minimum of two registrations in order to exclude erroneous 
registrations or false diagnoses. The ICD-10 criteria for hyperkinetic 
disorder/ADHD are “early onset; a combination of overactive, poorly 
modulated behavior with marked inattention and lack of persistent task 
involvement; and pervasiveness over situations and persistence over 
time of these behavioral characteristics” (World Health Organization, 
1993). Hyperkinetic disorder requires the combination of inattentive 
and hyperactive symptoms and is thus similar to the ADHD combined 
subtype in the DSM system (Thapar and Cooper, 2016). In the present 
study, we use the term ADHD. 

For ASD, we selected cases if they had registrations of “pervasive 
developmental disorders”, meeting criteria for ASD (F84.0, F84.1, 
F84.5, F84.8 or F84.9) (World Health Organization, 1993). Childhood 
autism (F84.0) is defined as “a pervasive developmental disorder 
defined by the presence of abnormal and/or impaired development that 
is manifest before the age of 3 years, and by the characteristic type of 
abnormal functioning in all three areas of social interaction, commu-
nication, and restricted, repetitive behavior” (World Health Organiza-
tion, 1993). For both ADHD and ASD, girls were oversampled among 
cases if possible. 

We selected a random sample of controls from the same eligible 
group of MoBa participants as the cases, fulfilling the same inclusion 
criteria as the cases (Fig. 1). The controls were frequency-matched to 
case categories on sex and birth year. We used the same control group 
for ASD and ADHD analyses. 

2.3. Exposures 

In this study, we used maternal blood samples from approximately 

week 17 of gestation. Details about the sampling procedure and 
handling and storage in the MoBa biobank are described in detail else-
where (Paltiel et al., 2014). Eleven metals and essential elements were 
determined in maternal whole blood, using inductively coupled plasma- 
sector field mass spectrometry (ICP-SFMS). These included both toxic/ 
non-essential metals; arsenic, cadmium, cesium, lead, mercury, and 
essential elements; cobalt, copper, magnesium, manganese, selenium, 
and zinc. Mercury and arsenic are measures of total mercury and total 
arsenic, containing both inorganic and organic forms. However, in the 
Norwegian population, these measures will largely reflect organic forms 
(Brantsæter et al., 2010). The analysis was mainly conducted at ALS 
laboratory group of Norway; a few samples were analyzed at the Uni-
versity of Lund as part of another MoBa project. The Norwegian Institute 
of Public Health has a framework agreement with ALS, and they have 
until now analyzed ~ 2000 samples of maternal whole blood from 
MoBa. Internal quality control samples and procedure blanks were 
analyzed along with each batch of samples to ensure high quality of the 
determinations throughout the project. We additionally included refer-
ence samples (Seronorm Trace Elements whole blood L-1, SERO AS, 
Billingstad, Norway) that were used as project-specific quality control 
(QC) samples. Case, control and QC samples were randomized to batch 
and blinded to the analysist. More detailed information on analytical 
procedures, limits of detection (LOD), limits of quantification (LOQ) and 
quality control can be found in Appendix A and Table S1. For most 
metals/elements, concentrations above LOQ are reported, except for 
arsenic, cadmium, lead, and mercury, for which concentrations above 
LOD are reported. Metals/elements concentrations are given in μg/L, 
except for magnesium, which is given in mg/L. 

The blood samples of our maternal participants were pulled from the 
Biobank and analyzed for metals and elements in three separate 
analytical rounds (see Appendix A). In addition, some samples were 
analyzed at the University of Lund (~4th round). To account for 
analytical variation across analytical rounds, we normalized the metal/ 
element concentrations for each participant using our QC samples 
(Seronorm reference material) analyzed in each of the analytical rounds. 
We used a similar approach with scaled variation of the Ratio-G batch 
adjustment as described in Luo et al. (2010). Suppose M represents the 

Fig. 1. Flow chart of recruitment of cases and controls in a nested case–control study of attention-deficit/hyperactivity disorder and autism spectrum disorder in The 
Norwegian Mother, Father and Child Cohort Study (MoBa), 2002–2009. Abbreviations: Attention-deficit/hyperactivity disorder (ADHD); autism spectrum disorder 
(ASD); The Medical Birth Registry of Norway (MBRN); The Norwegian Mother, Father and Child Cohort Study (MoBa); The Norwegian Patient Registry (NPR). 
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measured concentrations of metal/element i for each participant j. M*ij 
represents the analytical round-adjusted metal/element concentration, 
which is calculated using the following equation (Eq. (1)): 

M*
ij = Mijx (meanQCl/meanQClk), (1)  

where meanQCl represents the geometric mean of metal/element i in 
reference samples across all analytical rounds (5 reference samples × 4 
rounds), and meanQClk represents the geometric mean of metal/element 
i in reference samples from analytical round k (i.e. in the analytical 
round in which sample of the participant j was measured). 

2.4. Covariates and other variables 

We obtained information on covariates from the MBRN and the 
MoBa questionnaires completed during pregnancy and up to child’s age 
three years. The MoBa study included a food frequency questionnaire 
(FFQ) that the participants completed at 22 weeks’ gestation, providing 
good validity for estimates of intake of foods and nutrients (Brantsæter 
et al., 2008). Potential adjustment variables were selected a priori based 
on existing literature using a directed acyclic graph (DAG) approach 
(Greenland et al., 1999). We considered these as interdependent vari-
ables relevant for the current analysis: child sex, birth weight, birth year, 
and small for gestational age (SGA), maternal age at delivery, education, 
parity, pre-pregnancy body mass index (BMI, kg/m2), self-reported 
smoking and alcohol intake during pregnancy, as well as FFQ-based 
estimates of seafood intake (g/day), and dietary iodine intake (μg/ 
day). We used dagitty.net (Textor et al., 2011) to determine the minimal 
adjustment set, i.e. the minimal set of adjustment variables to obtain an 
unbiased causal effect under the assumption of no unmeasured con-
founders, for estimating the total effect of a metal/element given our 
hypothesized causal model (c.f. DAGs in Figures S1 and S2). This set 
included maternal age, seafood intake, smoking and parity. In addition, 
we adjusted for maternal education, child sex, and birth year in our 
analyses. Maternal ADHD symptoms, measured by the Adult ADHD Self- 
Report Scale (ASRS screener) (Kessler et al., 2005), were also included as 
a covariate in analyses with child ADHD as outcome. 

2.5. Statistical analysis 

Metal and element concentrations were natural log-transformed to 
approximate normal distributions. Among the 11 metals/elements 
included in our study, arsenic, cadmium, and cobalt had missing values 
due to levels below LOD or LOQ. Cesium and magnesium were not 
included in the analyses at the University of Lund and had missing 
values for this reason. In addition, some of the covariates had missing 
values. To replace missing data, we ran multiple imputation by chained 
equations, separately for the ADHD sample (with cases and controls) and 
for the ASD sample (with cases and controls). We generated 50 datasets 
with the exposure and outcome variables, covariates, and auxiliary 
variables (Rubin, 1976; Sterne et al., 2009) using the mi ice command in 
Stata (Royston, 2009). We used the method for interval-censored data 
and specified upper and lower limit for imputed results for metals/ele-
ments as LOD (arsenic and cadmium) or LOQ (cobalt) and zero, 
respectively (Royston, 2009). The pooling procedure used in this article 
was mi estimate (Stata Press, 2017). Details about the missing data and 
the imputation model are displayed in supplemental material (Appendix 
B). 

As a first approach, logistic regression analyses were performed for 
ADHD and ASD diagnoses, separately, to investigate dose–response re-
lationships between outcome variables and quartile levels of individual 
metals/elements. The lowest quartile was the reference group. We also 
explored effect measure modification (significance at p < 0.10) by child 
sex and maternal education (as a measure of socioeconomic position). As 
many metals/elements were tested individually in quartile plots, we 
acknowledge that the number of tests performed is fairly high (n = 33 

for each outcome), thus inflating the probability of type 1 error. 
Therefore, we also evaluated the results with 99.8% confidence intervals 
(CIs) and p < 0.002 for the quartile analyses. This would correspond to 
Šidák correction to control for familywise error rate (false discoveries or 
type I errors) for k = 33 number of tests calculated by 100(1-α)1/k % 
confidence intervals with α = 0.05. 

Secondly, to further investigate and test if the shape of the dos-
e–response relationships between individual elements/metals and 
ADHD/ASD deviated from a monotonic function, we modeled the as-
sociation between single metal/element as restricted cubic splines with 
knots at the 10th, 50th, and 90th percentile of the metal/element dis-
tributions (with baseline at the median). Prior to the spline analyses, 
metal/element outliers were replaced (less or equal to the 1st percentile 
and greater or equal to the 99th percentile) by the values above or below 
the 1st and 99th percentile. We tested if the spline association signifi-
cantly differed from a linear, logistic regression model association using 
likelihood ratio test (LRT; significance for non-linearity at p < 0.05). 
These analyses were performed in one of the imputed data sets. 

Finally, we analyzed the joint effect of metals and essential elements 
on ASD and ADHD diagnoses. The effect of individual metals or essential 
elements may be small and thus more challenging to identify. This 
makes it difficult to predict the joint (total) effect of the mixture based 
on modelling of individual metals/elements. For the mixture analyses 
we used a quantile-based g-computation approach (R package qgcomp; 
Keil and Buckley, 2019). This novel method, combining weighted 
quantile sum (WQS) regression and g-computation, is developed to 
assess effect of mixtures, giving estimates of the simultaneous effect on 
the outcome of an increase of all exposures in the mixture by one 
quantile (Keil and Buckley, 2019; Niehoff et al., 2020). In our study the 
quantile was set to one quartile increase in log-metal/element concen-
trations. We investigated three different mixtures a priori based on the 
literature (Tchounwou et al., 2012; Zoroddu et al., 2019): A mixture 
containing all 11 metals and essential elements, a mixture containing 
essential elements (selenium, manganese, cobalt, copper, zinc, and 
magnesium) and a mixture containing toxic/non-essential metals 
(arsenic, mercury, cadmium, lead, and cesium). 

We performed several sensitivity analyses. In the quartile models we 
restricted the sample to non-smokers (during pregnancy) for cadmium 
and lead. We also ran the quartile models without seafood intake as a 
covariate. We performed an additional interaction analysis for maternal 
education and cadmium, excluding children of mothers who smoked 
during pregnancy. Additionally, as maternal zinc and magnesium levels 
may be a marker of pregnancy multivitamin supplement intake, we ran 
the quartile models for zinc and magnesium with only children of 
mothers who took folate supplement during pregnancy. Finally, we did a 
sensitivity analysis where we removed those with blood samples 
measured at Lund and compared the results to our main results. This was 
done in order to ensure that laboratory did not substantially affect our 
results. 

All logistic regression models were expressed with odds ratios (ORs) 
and accompanying 95% CIs. Significance for non-linearity was set at p <
0.05 and interaction at p < 0.01. Most statistical analyses were per-
formed in Stata version 15 (StataCorp, 2019). In addition, we used R 
version 3.6.2 (R Core Team, 2018) with the “foreign” (R Core Team, 
2020), “Amelia” (Honaker et al., 2019), “psych” (Revelle, 2020), 
“readstata13” (Garbuszus & Jeworutzki, 2018), “qgcomp” (Keil, 2020), 
“ggplot2” (Wickham et al., 2020), and “tidyverse” (Wickham, 2019) 
packages. The imputed and adjusted results for the logistic regression 
models are presented in this article, while complete case analyses 
(Figures S3 and S4) are presented in the supplementary material. 
Metals/element concentrations before and after normalization to 
analytical round are presented in supplementary material (Table S2) as 
well as the quartile levels, ORs and CIs from the adjusted quartile models 
(Table S3). 
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3. Results 

3.1. Study sample characteristics and metal/element distribution 

Study sample characteristics are displayed in Table 1. Mothers of 
cases were slightly younger than mothers of controls. Among controls 
and ASD cases, the majority of the mothers had higher education (uni-
versity/college), whereas the majority of the mothers of the ADHD cases 
had lower education (less than university/college). Most of the mothers 
of controls and ADHD cases were multiparous, whereas the majority of 
mothers of ASD cases were primiparous. Mothers of ADHD cases were 
more likely to have reported smoking during pregnancy than mothers of 
controls and ASD cases. 

Table 2 shows the distribution of maternal blood concentrations of 
toxic metals and essential elements in our sample including the geo-
metric mean, median, and interquartile range of maternal metal/ 
element concentrations during pregnancy. Six of the metals/elements 
(copper, lead, manganese, mercury, selenium, and zinc) were above 
LOD/LOQ in all measurements. 

The correlations among the metals/elements are displayed in 
Table 3. The strongest correlations were between mercury and arsenic (r 
= 0.61), zinc and magnesium (r = 0.51), mercury and selenium (r =
0.38), and selenium and arsenic (r = 0.33). 

3.2. Quartile models with effect measure modification and restricted cubic 
splines 

3.2.1. ASD 
For ASD, the quartile models showed an elevated risk for children in 

quartile 2 of arsenic [OR = 1.77 (CI: 1.26, 2.49)] compared to quartile 1 
(reference) and with a decreasing monotonic trend in the next two 
quartiles (Fig. 2, Table S3). There was an elevated ASD risk for children 
in the highest quartiles of cadmium [OR = 1.57 (CI: 1.07, 2.31)] and 
manganese [OR = 1.84 (CI: 1.30, 2.59)] (Fig. 2, Table S3). We further 
identified negative associations with ASD (lowered risk) in some quar-
tiles of cesium, copper, and zinc (Fig. 2, Table S3). For mercury, all three 
quartiles had significantly lowered risk of ASD compared to quartile 1 
(Fig. 2, Table S3). The associations with arsenic, mercury, and manga-
nese remained with 99.8% CIs, while the one with cadmium did not 
remain. 

There was evidence of effect measure modification by child sex in the 
quartile models of mercury for ASD (overall p interaction < 0.10; 
Table S4). For mercury, the interaction with child sex was limited to 
quartile 2 (p interaction = 0.02) and quartile 4 (p interaction = 0.07), 
such that boys were driving the negative relationships with mercury in 
these quartiles [Q2: OR = 0.41 (CI: 0.28, 0.60); Q4: OR = 0.37 (CI: 0.25, 
0.56)] and not the girls [Q2: OR = 1.19 (CI: 0.55, 2.58); Q4: OR = 0.86 
(CI: 0.37, 1.98)] (Table S4). 

The restricted cubic splines showed significant non-linear associa-
tions for ASD with arsenic, lead, magnesium, and mercury, (Fig. 3). The 
association between arsenic and ASD showed an inverse U-shape 
(Fig. 3). For lead and magnesium, the splines were U-shaped (Fig. 3). For 
mercury there was a non-linear shape with elevated ASD risk among the 
lower mercury concentrations and no apparent risk at higher concen-
trations (Fig. 3). 

3.2.2. ADHD 
For ADHD there was an increasing risk with increasing cadmium 

quartiles in a monotonic dose response pattern, although this was only 
significant for children in highest cadmium quartile [OR = 1.59 (CI: 
1.15, 2.18)] compared to the lowest quartile (Fig. 4, Table S3). This 
relationship was significantly modified by maternal education in quar-
tile 3 only (p interaction = 0.02) with higher odds of ADHD among 
children with mothers of university/college education [OR = 1.54 (CI: 
1.08, 2.20)] compared to those with less than university/college [OR =
0.77 (CI: 0.48, 1.24) (Table S5). This relationship also persisted when 

children of mothers who smoked during pregnancy were excluded 
(Table S6). 

For children in the highest quartile of magnesium there was an 
elevated risk of ADHD [OR = 1.42 (CI: 1.06, 1.91)] (Fig. 4, Table S3). 
Although the main models of manganese did not identify any significant 
relationship with ADHD, apart from a weak negative association with 
quartile 3, this relationship was significantly modified by maternal ed-
ucation (p interaction = 0.02). There were higher odds among children 

Table 1 
Characteristics of study population in a nested case–control study of attention- 
deficit/hyperactivity disorder and autism spectrum disorder in The Norwegian 
Mother, Father and Child Cohort Study (MoBa), 2002–2009.  

Characteristic MoBa Controls 
Mean ± SD or 
n (%) 

NPR ADHD 
Cases 
Mean ± SD or 
n (%) 

NPR ASD 
Cases 
Mean ± SD or 
n (%) 

Total N 1034 705 397 
Maternal ADHD sum score 2.09 ± 0.56 2.24 ± 0.71 2.24 ± 0.59  

Missing (n) 397 258 170 
Maternal education     

< University/college 336 (33.3) 356 (51.8) 163 (42.1)  
University/college 673 (66.7) 331 (48.2) 224 (57.9)  
Missing (n) 25 18 10 

Maternal age (years) 30.06 ± 4.43 29.0 ± 4.97 29.6 ± 4.94  
Missing (n) 0 0 0 

Parity     
0 440 (42.6) 340 (48.2) 228 (57.4)  
1 or more 594 (57.4) 365 (51.8) 169 (42.6)  
Missing (n) 0 0 0 

Maternal total seafood 
intake (g/day) 

36.7 ± 21.87 37.4 ± 27.7 36.3 ± 25.1  

Missing (n) 123 82 26 
Child sex     

Girl 329 (31.8) 185 (26.2) 61 (15.4)  
Boy 705 (68.2) 520 (73.8) 336 (84.6)  
Missing (n) 0 0 0 

Child year of birth     
2002 243 (23.5) 93 (13.2) 35 (8.82)  
2003 149 (14.4) 149 (21.2) 68 (17.1)  
2004 188 (18.2) 152 (21.6) 55 (13.9)  
2005 249 (24.1) 142 (20.1) 70 (17.6)  
2006 84 (8.1) 93 (13.2) 69 (17.4)  
2007 67 (6.5) 63 (8.9) 55 (13.9)  
2008 49 (4.7) 13 (1.8) 38 (9.6)  
2009 5 (0.5) – 7 (1.8)  
Missing (n) 0 0 0 

Alcohol during pregnancy     
No 680 (68.6) 486 (71.6) 269 (70.2)  
Yes 311 (31.4) 193 (28.4) 114 (29.8)  
Missing (n) 43 26 14 

Smoking during pregnancy     
No 901 (87.1) 545 (77.4) 332 (83.6)  
Yes 133 (12.9) 159 (22.6) 65 (16.4)  
Missing (n) 0 1 0 

Maternal marital status     
Married/cohabitant 1005 (97.2) 649 (92.1) 377 (95.0)  
Other (single, 
divorced, widow) 

29 (2.8) 56 (7.9) 20 (5.04)  

Missing (n) 0 0 0 
Child birth weight (grams) 3649 ± 519 3586 ± 638 3594 ± 670  

Missing (n) 0 1 0 
Length of gestation (weeks) 39.5 ± 1.67 39.3 ± 2.11 39.37 ± 2.25 
Missing (n) 3 5 1 
Maternal total folate intake 

(µg/day) 
240 ± 233 260 ± 260 262 ± 306  

Missing (n) 78 42 26 
Maternal folate supplement     

No 395 (38.2) 260 (36.9) 127 (32.0)  
Yes* 639 (61.8) 445 (63.1) 270 (68.0)  
Missing (n) 0 0 0 

Note: *Any folate supplements between 4wk before and 8 wk after conception. 
Abbreviations: Attention-deficit/hyperactivity disorder (ADHD); autism spec-
trum disorder (ASD); grams (g); micrograms (µg); Norwegian patient registry 
(NPR); standard deviation (SD). 
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in the highest quartile of manganese whose mothers had college/uni-
versity education [OR = 1.08 (CI: 0.75, 1.56)] compared to those with 
less than college/university [OR = 0.55 (CI: 0.35, 0.86)]. There were 
several negative associations with ADHD, among others with copper and 
mercury (Fig. 4, Table S3). The associations with copper and mercury 
remained with 99.8% CIs, but not the relationships with cadmium and 
magnesium. 

For ADHD there were non-linear associations with arsenic, copper, 
manganese, and mercury (Fig. 5). The associations between ADHD and 
arsenic, copper, and manganese were slightly U-shaped (Fig. 5). The 
association between ADHD and mercury had a similar shape to the one 

between ASD and mercury, with higher risk at the lowest levels (Fig. 5). 

3.3. Sensitivity analyses in the quartile models 

The sensitivity analysis for zinc with ASD, where we only included 
mother–child pairs who took folate supplement during pregnancy 
(Table S7), did not change the estimates considerably. For magnesium 
and ASD, the estimates increased for the fourth quartile (Table S7). For 
ADHD, the sensitivity analyses for zinc and magnesium were similar to 
the main analyses (Table S7). The quartile analyses where we omitted 
seafood intake as a covariate did not differ considerably from our main 

Table 2 
Metal/essential element distribution (µg/L or mg/L) in a nested case–control study of attention-deficit/hyperactivity disorder and autism spectrum disorder in The 
Norwegian Mother, Father and Child Cohort Study (MoBa), 2002–2009.  

Metal/ element Case/control N % > LOQ Geometric mean (95% CI) Min 25% 50% 75% Max 

As Control 1022 98.8 1.76 (1.67, 1.85) 0.12 1.00 1.68 2.85 54.2 
ADHD case 687 97.4 1.59 (1.49, 1.70) 0.09 0.88 1.50 2.71 27.0 
ASD case 396 99.7 1.65 (1.55, 1.77) 0.33 1.03 1.43 2.40 27.0 

Cd Control 1012 97.9 0.19 (0.18, 0.20) 0.01 0.12 0.18 0.28 3.05 
ADHD case 696 98.7 0.24 (0.22, 0.25) 0.02 0.14 0.20 0.40 3.14 
ASD case 397 100 0.22 (0.20, 0.24) 0.02 0.13 0.19 0.32 142 

Co Control 1003 97.0 0.19 (0.18, 0.20) 0.04 0.12 0.18 0.28 29.5 
ADHD case 681 96.6 0.18 (0.17, 0.18) 0.04 0.11 0.17 0.25 1.77 
ASD case 397 100 0.18 (0.17, 0.19) 0.04 0.12 0.18 0.27 1.31 

Cs Control 934 90.3 2.28 (2.23, 2.33) 0.91 1.83 2.26 2.82 8.45 
ADHD case 628 89.1 2.13 (2.06, 2.19) 0.72 1.67 2.12 2.62 9.49 
ASD case 393 99.0 2.12 (2.05, 2.19) 0.68 1.69 2.17 2.65 9.25 

Cu Control 1034 100 1562 (1548, 1577) 778 1426 1551 1737 3178 
ADHD case 705 100 1568 (1548, 1589) 774 1401 1573 1737 3629 
ASD case 397 100 1584 (1558, 1610) 901 1425 1584 1742 3583 

Hg Control 1034 100 1.39 (1.34, 1.45) 0.18 0.96 1.44 2.12 10.0 
ADHD case 705 100 1.17 (1.11, 1.23) 0.08 0.77 1.25 1.91 7.86 
ASD case 397 100 1.17 (1.09, 1.26) 0.12 0.73 1.20 1.93 10.1 

Mg Control 934 90.3 30.1 (29.9, 30.4) 18.5 28.0 30.3 32.6 45.0 
ADHD case 628 89.1 30.2 (29.9, 30.6) 15.2 28.0 30.4 33.2 74.45 
ASD case 393 99.0 30.1 (29.7, 30.5) 15.2 27.8 30.6 33.0 42.7 

Mn Control 1034 100 10.2 (9.97, 10.5) 3.38 8.04 9.91 12.30 164 
ADHD case 705 100 9.97 (9.63, 10.3) 2.06 7.60 9.63 12.0 221 
ASD case 397 100 11.1 (10.5, 11.6) 2.06 8.33 10.2 13.5 128 

Pb Control 1034 100 8.82 (8.60, 9.05) 1.96 6.61 8.68 11.21 82.4 
ADHD case 705 100 8.74 (8.46, 9.02) 1.88 6.74 8.57 11.53 57.4 
ASD case 397 100 8.35 (7.97, 8.75) 1.59 6.22 8.30 11.08 57.4 

Se Control 1034 100 93.04 (91.9, 94.2) 47.1 81.7 92.3 105 312 
ADHD case 705 100 90.1 (88.8, 91.5) 41.7 79.7 88.9 102 223 
ASD case 397 100 93.3 (91.3, 95.3) 44.4 81.6 93.0 108 182 

Zn Control 1034 100 5202 (5139, 5266) 1972 4643 5269 5896 9931 
ADHD case 705 100 5051 (5217) 1189 4495 5237 5875 11,186 
ASD case 397 100 4966 (4850, 5085) 1189 4393 5170 5707 10,743 

Note: Mg values are in mg/L, all others are in µg/L. Abbreviations: Arsenic (As); attention-deficit/hyperactivity disorder (ADHD); autism spectrum disorder (ASD); 
cadmium (Cd); cesium (Cs); cobalt (Co); copper (Cu); lead (Pb); magnesium (Mg); manganese (Mn); mercury (Hg); selenium (Se); zinc (Zn). 

Table 3 
Spearman correlations between metals and essential elements (µg/L or mg/L) in a nested case–control study of attention-deficit/hyperactivity disorder and autism 
spectrum disorder in The Norwegian Mother, Father and Child Cohort Study (MoBa), 2002–2009.  

Abbreviations: Arsenic (As); cadmium (Cd); cesium (Cs); cobalt (Co); copper (Cu); lead (Pb); magnesium (Mg); manganese (Mn); mercury (Hg); selenium (Se); zinc 
(Zn). 
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Fig. 2. Odds ratios and 95% confidence intervals of logistic regression models predicting autism spectrum disorder in quartile categories of gestational metal/ 
essential element levels in a nested case–control study of autism spectrum disorder in The Norwegian Mother, Father and Child Cohort Study (MoBa), 2002–2009 (n 
= 1431). Note: Logistic regression with multiple imputed datasets (n = 50). All metal/element concentrations were normalized to analytical round and natural log 
transformed. The odds ratio and 95% confidence intervals for each metal/element quartile are represented on the vertical axis (the reference level is the first 
quartile). Each regression model was adjusted for maternal age, education, parity, seafood intake, smoking, child sex, and child birth year. Abbreviations: Arsenic 
(As); cadmium (Cd); cesium (Cs); cobalt (Co); copper (Cu); lead (Pb); magnesium (Mg); manganese (Mn); mercury (Hg); selenium (Se); zinc (Zn). 

Fig. 3. Restricted cubic spline predicting the odds of autism spectrum disorder in children associated with gestational levels of arsenic, lead, magnesium, and 
mercury in a nested case–control study of autism spectrum disorder in The Norwegian Mother, Father and Child Cohort Study (MoBa), 2002–2009 (n = 1431). Note: 
Three knot positions at 10th, 50th and 90th percentiles of arsenic, lead, magnesium, and mercury. Solid lines represent estimated odds ratios, and the dashed lines 
represent 95% confidence intervals. Hashing along the top horizontal axis represents the distribution of cases. Analyses was performed in one imputed dataset. The 
model was adjusted for maternal age, education, parity, seafood intake, smoking, child sex, and child birth year. Abbreviations: Arsenic (As); autism spectrum 
disorder (ASD); confidence intervals (CI); lead (Pb); likelihood ratio test (LRT); magnesium (Mg); mercury (Hg). 
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Fig. 4. Odds ratios and 95% confidence intervals of logistic regression models predicting attention-deficit/hyperactivity disorder in quartile categories of gestational 
metal/essential element levels in a nested case–control study of attention-deficit/hyperactivity disorder in The Norwegian Mother, Father and Child Cohort Study 
(MoBa), 2002–2009 (n = 1739). Note: Logistic regression with multiple imputed datasets (n = 50). All metal/element concentrations were normalized to analytical 
round and natural log transformed. The odds ratio and 95% confidence intervals for each metal/element quartile are represented on the vertical axis (the reference 
level is the first quartile). Each regression model was adjusted for maternal age, education, parity, ADHD symptoms, seafood intake, smoking, child sex, and child 
birth year. Abbreviations: Arsenic (As); attention-deficit/hyperactivity disorder (ADHD); cadmium (Cd); cesium (Cs); cobalt (Co); copper (Cu); lead (Pb); magnesium 
(Mg); manganese (Mn); mercury (Hg); selenium (Se); zinc (Zn). 

Fig. 5. Restricted cubic spline predicting the odds of attention-deficit/hyperactivity disorder in children associated with gestational levels of arsenic, copper, 
manganese, and mercury in a nested case–control study of attention-deficit/hyperactivity disorder in The Norwegian Mother, Father and Child Cohort Study (MoBa), 
2002–2009 (n = 1739). Note: Three knot positions at 10th, 50th and 90th percentiles of arsenic, copper, manganese, and mercury. Solid lines represent estimated 
odds ratios, and the dashed lines represent 95% confidence intervals. Hashing along the top horizontal axis represents the distribution of cases. Analyses was 
performed in one imputed dataset. The model was adjusted for maternal age, education, parity, ADHD symptoms, seafood intake, smoking, child sex, and child birth 
year. Abbreviations: Arsenic (As); attention-deficit/hyperactivity disorder (ADHD); confidence intervals (CI); copper (Cu); likelihood ratio test (LRT); manganese 
(Mn); mercury (Hg). 
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models (data not shown). The sensitivity analysis where we omitted 
smokers from the quartile models of cadmium and lead, did neither 
differ to a considerable degree from the main models (data not shown). 
We compared the main quartile models to models without blood sam-
ples analyzed at Lund, and the results were similar (data not shown). 

3.4. Quantile-based g-computation 

None of the results from the quantile-based g-computation of the 
total metal/element mixture were significant, for neither ASD [OR =
0.98 (CI: 0.76, 1.27)] nor ADHD [OR = 0.83 (CI: 0.67, 1.03)] (Table S8, 
Figure S5). The separate analyses with either essential elements or toxic/ 
non-essential elements, were neither significant for ASD nor for ADHD 
(Table S8, Figure S6 and S7). 

4. Discussion 

In this large, prospective study, we found associations indicating 
increased risk of ASD in children with increased maternal levels of 
arsenic, cadmium, and manganese and increased risk of ADHD with 
increased maternal levels of cadmium and magnesium. In addition, 
there were negative (inverse) associations, between mercury and ASD 
and between mercury and copper with ADHD. Several of the associa-
tions were significantly non-linear or non-monotonic when dos-
e–response relationships were modeled using restricted cubic splines. 
Neither of the mixtures from the quantile-based g-computation analyses 
were significantly associated with either ASD or ADHD. 

4.1. Gestational toxic metals and ASD and ADHD in children 

4.1.1. Cadmium 
In the present study, we found 1.6 times higher odds for both ASD 

and ADHD in children of the highest cadmium exposure groups 
compared to the lowest exposure group. This is noteworthy, as cadmium 
is yet to be verified (i.e. suspected) as a developmental neurotoxicant 
(European Food Safety Authority, 2009). Our findings add to the 
emerging evidence from human epidemiological and experimental an-
imal studies that cadmium can interfere with important functions of 
brain development (Liu et al., 2019; Sanders et al., 2015). The results in 
the present study are in line with a recent study that reported associa-
tions between prenatal cadmium exposure and increased ADHD symp-
toms in girls (Kim et al., 2020). Another study reported an association 
between prenatal exposure to cadmium and an increased risk of 
emotional problems among boys (Sioen et al., 2013), but no effects on 
hyperactivity. However, two other studies investigating prenatal cad-
mium exposure, reported no adverse effects on neurodevelopmental 
outcomes (Forns et al., 2014; Long et al., 2019). There are still few 
prospective studies on prenatal cadmium exposure and ADHD or ASD in 
children (Rodríguez-Barranco et al., 2013; Vrijheid et al., 2016). 

The association between cadmium and ADHD was modified by 
maternal education in the mid-to-high-exposure groups, with higher 
odds of ADHD diagnosis in children of mothers with university/college 
education compared to those with less than university/college educa-
tion. Since smoking is a source of cadmium exposure (Agency for Toxic 
Substances and Disease Registry, 2012), and often related to lower SES 
(e.g. Magnus et al., 2015), we ran the analyses without mothers who 
smoked. However, our results remained when we omitted children of 
mothers who smoked during pregnancy. These results appear to contrast 
previous findings where higher cadmium exposure in pregnant women 
were associated with lower education (Caspersen et al., 2019; Montazeri 
et al., 2019; Tyrrell et al., 2013). Perhaps other sources of cadmium than 
smoking, such as intake of seafood (Agency for Toxic Substances and 
Disease Registry, 2012; Birgisdottir et al., 2013), contributed more to 
the cadmium exposure in the current study. Indeed, higher intake of 
seafood is related to higher educational level (Montazeri et al., 2019). 

4.1.2. Arsenic 
Our findings of increased risk of ASD and ADHD associated with 

prenatal arsenic exposure are in line with the epidemiologic literature, 
with numerous studies documenting the developmental neurotoxic ef-
fect of arsenic (as reviewed in Bjørklund et al., 2018; Grandjean & 
Landrigan, 2014). Arsenic (mainly inorganic) has been associated with 
adverse effects on cognitive functions, such as IQ, but there is still a lack 
of studies examining prenatal arsenic exposure and ADHD or ASD 
diagnosis (Rodríguez-Barranco et al., 2013). However, two prospective 
studies found no associations between prenatal arsenic exposure and 
ADHD and ASD, respectively (Forns et al., 2014; Long et al., 2019). Most 
studies on ASD have measured arsenic in hair, by proximity to industrial 
facilities, or by levels in drinking water, as well as measured arsenic at 
the same time as outcome assessment (Bjørklund et al., 2018). Further, 
the majority of studies have measured exposure to inorganic arsenic 
species, whereas for the Norwegian population, including the partici-
pants herein, the main source of arsenic is organic forms (e.g. arsen-
obetaines) from fish and seafood intake (European Food Safety 
Authority, 2014; Molin et al., 2015). However, it is mainly the inorganic 
arsenic form that is recognized as a neurotoxicant (Agency for Toxic 
Substances and Disease Registry, 2007). Still, there are uncertainties 
about the toxicity of organic forms (Agency for Toxic Substances and 
Disease Registry, 2007; Molin et al., 2015). The increased risk of ASD 
and ADHD with prenatal exposure to mainly organic arsenic in the 
present study could thus be of importance and should be investigated 
further. 

4.1.3. Mercury 
Mercury, particularly methylmercury, is a well-established devel-

opmental neurotoxicant (Grandjean & Landrigan, 2006). Early-life 
(mainly childhood) exposure has been shown to adversely affect neu-
rodevelopment in children (Grandjean & Landrigan, 2006; Vrijheid 
et al., 2016), although there are some inconsistencies in findings due to 
the confounding effects of seafood intake (Vrijheid et al., 2016). Still, 
there is a lack of prospective studies investigating prenatal exposure to 
mercury and diagnoses of ADHD, and particularly, ASD, where most 
studies are cross-sectional (Kern et al., 2016; Sanders et al., 2015; 
Vrijheid et al., 2016). Prenatal mercury levels have been associated with 
risk of ADHD or related symptoms in a few previous studies (e.g. 
Boucher et al., 2012; Sagiv et al., 2012). In the present study, however, 
increasing gestational mercury was associated with lowered risk of both 
ASD and ADHD in children, which are unexpected findings. Although we 
adjusted for estimated maternal seafood intake (fish and shellfish) 
during pregnancy in our analyses, this had little impact on the estimates 
as our results remained when we excluded maternal seafood intake as a 
covariate. A study of metals as biomarkers for fish and seafood intake 
has been performed using data from MoBa (Brantsæter et al., 2010). 
Blood levels of mercury were associated with total fish and seafood 
intake, as well as several sub-categories (Brantsæter et al., 2010). 
Although our findings may reflect some other unknown biases we did 
not adjust for, it could be that mercury concentrations in maternal blood 
serve as a better marker for seafood intake than FFQ-based estimates. 
Thus, mercury levels could be a proxy measure for the intake of poly-
unsaturated fatty acids and other beneficial nutrients for brain devel-
opment that is found in seafood (Avella-Garcia & Julvez, 2014). This 
could explain the observed lowered odds of ASD and ADHD in relation to 
increased prenatal mercury. Furthermore, this protective effect seemed, 
at least for ASD, to be sex-specific and found primarily in boys. A 
comparable study on prenatal mercury exposure and symptoms of ASD 
in children also reported interaction with child sex with significant re-
sults for boys, although they found a positive association (Ryu et al., 
2017). Further studies are needed to disentangle the potential negative 
impact of mercury exposure from fish intake on neurodevelopment from 
the positive effect of beneficial nutrients from the same source. 
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4.1.4. Lead 
Lead is another well-known developmental neurotoxicant with no 

known safe exposure level for neurodevelopment (European Food Safety 
Authority, 2010; Grandjean & Landrigan, 2014). Postnatal lead expo-
sure has been associated with detrimental effects on IQ in children, even 
at low blood levels (e.g. < 10 μg/dL) (Budtz-Jørgensen et al., 2013; 
Lanphear et al., 2005). We identified a non-linear (U-shaped) associa-
tion with prenatal lead exposure and ASD, while there were no such 
findings for ADHD diagnosis in children. The non-linear/U-shape 
observed in this study, indicate that both low-level and higher prena-
tal exposures to lead are associated with increased risk of ASD in chil-
dren. Non-linear dose–response relationships have been shown in 
several studies of lead exposure in childhood and neurodevelopmental 
outcomes, such as IQ (Vrijheid et al., 2016). According to the European 
Food Safety Authority, dose–response relationships appear to be non- 
linear, with greater impact at lower levels of lead (European Food 
Safety Authority, 2010). We also detected increased risk at higher levels 
of lead, which is in line with the literature, although prospective studies 
are lacking when it comes to prenatal lead exposure and ASD (reviewed 
in Bjørklund et al., 2018; Mason et al., 2014). However, one study on 
lead in amniotic fluid and ASD did not report any significant associations 
between lead exposure and ASD diagnosis (Long et al., 2019), although 
non-linearity was not investigated. Regarding ADHD, there are many 
studies showing evidence for associations between childhood lead 
exposure and ADHD or related symptoms (reviewed in Kern et al., 
2015), as well as a few prospective studies (lead measured in cord blood 
or maternal blood) (e.g. Boucher et al., 2012; Neugebauer et al., 2015; 
Plusquellec et al., 2007; Sioen et al., 2013). 

4.2. Gestational essential elements and ASD and ADHD in children 

4.2.1. Copper 
Copper is an essential element that is important in several biological 

processes, and necessary for a normal fetal development (Uriu-Adams 
et al., 2010; Zoroddu et al., 2019). Copper is also a suspected neuro-
toxicant when surplus exposure occurs due to copper’s highly reactive 
nature and thus ability to cause oxidative stress (Amorós et al., 2019; 
Zoroddu et al., 2019). Furthermore, copper deficiency in pregnancy has 
been linked with abnormal human perinatal development (Zoroddu 
et al., 2019). We identified a non-monotonic association between ADHD 
and copper, showing a U-shaped pattern with higher risk at both lower 
and higher levels. This association between gestational levels of copper 
and ADHD diagnosis is novel, as few other studies have investigated this. 
Our findings of increased risk of ADHD in children with increasing 
maternal levels of copper are in line with one study reporting adverse 
effects from elevated prenatal copper exposure on neuropsychological 
development in 12 months old infants and five-year-olds (Amorós et al., 
2019). It was also consistent with a study reporting dysregulation of 
copper amongst ADHD cases (Austin et al., 2019). In contrast, a study on 
ADHD symptoms in children did not detect any associations with copper 
levels during pregnancy (Forns et al., 2014). Neither did a study on 
prenatal levels of copper and neurodevelopmental outcomes (cognitive, 
language, and motor functions) (Polanska et al., 2017). There are 
however some recent cross-sectional studies that have reported associ-
ations between higher copper levels in childhood and increased risk of 
ADHD (e.g. Li et al., 2020; Skalny et al., 2020). In addition, results from 
human and animal studies suggest that prenatal copper toxicity can be a 
contributor to ASD (Nuttall, 2017), although we did not detect any 
(noteworthy) associations between copper and ASD herein. 

4.2.2. Magnesium 
Magnesium is an essential element that is vital for fetal development, 

and deficiency of magnesium during pregnancy has been associated 
with increased neonatal mortality and morbidity (Pathak & Kapil, 2004; 
Zhang et al., 2013). In the present study, there was an association with 
magnesium in the highest exposure group with increased risk of ADHD 

diagnosis in children. In addition, we identified a non-monotonic U- 
shaped pattern between gestational magnesium and ASD in children, 
with higher risk at both lower and higher levels. In the sensitivity 
analysis where we only included mothers who took folate supplement 
during pregnancy, the estimates for the highest exposure group of 
magnesium and ASD increased. This could indicate that multivitamin 
supplements are important sources of magnesium for pregnant women. 
Two meta-analyses found that children diagnosed with ADHD and ASD, 
respectively, had lower magnesium levels compared to neurotypical 
developing children (Huang et al., 2019; Saghazadeh et al., 2017). 
However, the results from the cross-sectional studies are inconsistent 
and still based on few studies (Botturi et al., 2020). These studies have, 
nonetheless, hypothesized that sufficient magnesium levels can coun-
teract or protect against development of ADHD through increased syn-
aptic plasticity and dopaminergic and serotonergic signaling (Huang 
et al., 2019; Skalny et al., 2020). To our knowledge, the present study is 
one of the first that have prospectively investigated maternal blood 
levels of magnesium in pregnancy and ADHD and ASD diagnosis in 
offspring. Our results on the lower levels of magnesium and ASD, are in 
line with the studies reporting lower levels among ADHD cases, still the 
literature on magnesium and ASD is scarce and results are inconsistent 
(Botturi et al., 2020). 

4.2.3. Manganese 
There was increased risk of ASD among children whose mothers had 

the highest levels of manganese compared to those with the lowest 
levels. In addition, we observed a non-monotonic, slightly U-shaped 
pattern between gestational manganese and ADHD in children. Man-
ganese is an essential element that is vital for brain growth and devel-
opment, but in excess it is recognized as a developmental neurotoxicant 
as well as having a U-shaped dose–response relationship with outcomes: 
both insufficiency and excess levels can adversely affect neuro-
development (Grandjean & Landrigan, 2014; Lucchini et al., 2017). 
Previous epidemiologic studies on ASD have however, reported con-
flicting results (Lucchini et al., 2017), but most of these studies are cross- 
sectional and have measured manganese in different matrices (e.g. air 
distribution, tooth enamel, urine, hair, blood). For ADHD, there seems to 
be more consensus in the literature that high levels of manganese in 
childhood contributes to increased risk, but this is still based on few and 
cross-sectional studies (Lucchini et al., 2017). However, one prospective 
study did not detect any significant associations between manganese in 
umbilical cord serum and child ADHD (Ode et al., 2015). In the present 
study, there was evidence of effect measure modification by maternal 
education within the highest levels of maternal manganese and child 
ADHD, with higher odds of ADHD among children of mothers with 
university/college education. To our knowledge, manganese has not 
been studied to a large degree in relation to socioeconomic factors. One 
previous study of pregnant women did not detect any significant asso-
ciations between manganese and maternal education (Montazeri et al., 
2019). 

4.3. Potential mechanisms and mixtures 

Developmental neurotoxicants such as lead, mercury, and arsenic 
may act on several cellular, molecular, and biochemical targets in the 
developing brain and induce structural changes or affect neural plas-
ticity (Grandjean & Landrigan, 2006, 2014). Some essential nutrients, 
such as selenium, manganese, and zinc, are vital for various biochemical 
and physiological functions (Tchounwou et al., 2012), and both insuf-
ficient and excess prenatal levels can adversely affect fetal brain 
development (Amorós et al., 2018a, 2018b). Metals and essential ele-
ments can be developmentally neurotoxic through several overlapping 
mechanisms. One of the hypothesized mechanisms is abnormal 
methylation during fetal development (Kern et al., 2015; Tran & 
Miyake, 2017). This can affect DNA methylation homoeostasis, which 
again may negatively impact brain development (Alvarado-Cruz et al., 
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2018; Tran & Miyake, 2017). Other mutual mechanisms disrupting 
normal brain development, include alterations of maternal and fetal 
thyroid and immune functions, oxidative stress, and induced changes in 
fetal neurotransmitter systems (Heyer & Meredith, 2017). Alterations of 
neurotransmitter systems can lead to deficits in the central nervous 
system structure (Heyer & Meredith, 2017), indeed, dysfunction of the 
dopaminergic system has been linked to ADHD, and increased levels of 
serotonin to ASD (Heyer & Meredith, 2017). 

There is a lack of studies investigating toxic metals and essential 
elements and neurodevelopment using mixture approaches (Tran & 
Miyake, 2017; Vrijheid et al., 2016). Toxic metals can, in combination 
with other metals, as well as nutrients, including essential elements, 
produce interactive effects (additive, synergistic or antagonistic) that 
adversely impact neurodevelopment (Tchounwou et al., 2012; Wu et al., 
2016), where the net effect cannot be predicted by analyzing only single 
compounds. In the present study, the metals and elements were both 
positively and negatively associated with ASD or ADHD; negative as-
sociations with mercury, cesium, and zinc and positive associations with 
cadmium and magnesium. It is therefore likely that they cancelled each 
other out, and thus the overall estimation was null. Nonetheless, in other 
populations, where exposure to toxic metals are higher and/or where 
essential elements or other micronutrients show a greater variation, 
these mixtures may have a stronger impact on neurodevelopmental 
outcomes. Quantile-based g-computation has to our knowledge not been 
done before in this particular research context, making comparisons to 
other studies challenging. Similar studies have mainly used mixture 
approaches for variable selection (e.g. Lenters et al., 2019; Long et al., 
2019), as opposed to estimating the overall effect of the mixture. 

4.4. Observed similarities and differences in the results for ASD and 
ADHD 

We observed several similarities in gestational levels of metals/ele-
ments and their associations with ADHD and ASD cases compared to 
neurotypical developing children; including cadmium, copper, magne-
sium, mercury, and zinc, as well as arsenic and manganese, although the 
two latter metals/elements were related to ASD and ADHD in opposite 
directions. The developmental origins of ASD and ADHD are inter-
twined, and the disorders have strong genetic correlates (Dougherty 
et al., 2016; Rommelse et al., 2011). It has been proposed that the two 
disorders share some neurochemical and neurodevelopmental pathways 
(Kern et al., 2015). Additionally, comorbidity among ASD and ADHD 
has been reported in several studies (Brookman-Frazee et al., 2018; 
Hansen et al., 2018; Surén et al., 2012). The overlapping neural features, 
comorbidity patterns and the similarities in risk factors, support the 
hypothesis that ASD and ADHD might exist on a continuum of clinical 
expression (Anttila et al., 2018; Jokiranta-Olkoniemi et al., 2016; Kern 
et al., 2015; Taylor et al., 2019; Wade et al., 2015), and may share ge-
netic and environmental causes. The findings in the present study 
appear to support that several toxic or essential elements in utero 
represent overlapping environmental factors risk factors for ASD and 
ADHD. 

Even so, we did observe some differences in the present study, e.g. 
lead increasing risk for ASD (but not for ADHD), arsenic with a U-shaped 
pattern for ADHD and an inverse U-shape for ASD, and manganese with 
increased risk for ASD in the highest levels while a non-monotonic 
relationship with ADHD was observed. This could be attributed to dif-
ferential vulnerability to metals/elements during fetal development 
(Kern et al., 2015) caused by specific features in prenatal (dys)regula-
tion of metal and essential element metabolism among children with 
ADHD and ASD (Arora et al., 2017; Austin et al., 2019). Seemingly, 
metal toxicant uptake and deficiency of essential elements during fetal 
development can increase ASD risk (Arora et al., 2017; Austin et al., 
2019). One study showed that children with ASD had lower uptake of 
essential elements (manganese and zinc) and a higher uptake of 
neurotoxic metals (lead) compared to controls (Arora et al., 2017). 

Similarly, in a study of ADHD cases, regularity and complexity of 
elemental cycles were reduced for lead, copper, cobalt and vanadium 
(Austin et al., 2019). Although this does not fit entirely with the dif-
ferential patterns in ASD and ADHD cases observed herein, it is impor-
tant to note that we did not measure metal/element levels in the 
children. Overall, both similarities and differences in the roles of toxic 
metals or essential elements during development and later development 
of ASD and ADHD in children, could point to important aspects in the 
etiologies of these two disorders. Future studies on this subject, using a 
prospective design, should also include comorbid ASD-ADHD case 
groups. 

4.5. Limitations and strengths 

Our study has some limitations. Despite our efforts to oversample 
girls, there were fewer girls than boys in the present study, especially in 
the ASD case groups. The estimates for girls were less precise and reli-
able than for boys and this may have influenced the interaction analyses. 
While it would have been interesting to explore iron deficiency, as it can 
increase uptake of other metals (Meltzer et al., 2010), measures of iron 
status were not available for the present analyses. In our sample, there 
was no information of overlap between ASD and ADHD cases, as coding 
according to ICD-10 does not allow comorbid primary diagnoses (F84 
and F90). However, this does not exclude the possibility of overlap 
regarding symptoms. Another potential limitation concerns the clinical 
basis for the ADHD NPR registrations and the possibility that alternative 
diagnoses should have been considered (Surén et al., 2018). The validity 
of the ASD diagnoses in NPR was found to be very high in a study 
involving participants in MoBa (Surén et al., 2014). Lastly, limitations in 
our study also include potential self-selection bias. The participant rate 
in the MoBa cohort was 41% and the participants in MoBa are in general 
older, have higher educational level and a healthier lifestyle compared 
with the general population (Nilsen et al., 2009). 

Our research also has several strengths. This is one of the first studies 
to investigate the impact of gestational levels of 11 metals and essential 
elements, individually and as mixtures, on the risk of clinician-based 
ADHD and ASD diagnoses in children in a large, population-based 
sample. The large sample enabled exploration of potential effect mea-
sure modifiers. Further, the use of a prospective study design is more 
informative on risks than cross-sectional studies. Moreover, our 
approach benefitted from a large number of relevant covariates 
collected prospectively during pregnancy, used to account for residual 
confounding pathways. In addition, most of the associations among the 
quartiles remained when we adjusted for multiple testing, even when 
using a relatively conservative method. 

5. Conclusion 

Results from the present study show several associations between 
levels of metals and elements during gestation and ASD and ADHD in 
children. The most notable ones involved arsenic, cadmium, copper, 
mercury, manganese, magnesium, and lead. The measured blood levels 
of toxic metals were in line with previous studies of pregnant women in 
Norway and in other European countries (Haug et al., 2018), indicating 
that even population levels of these compounds may have a negative 
impact on neurodevelopment. As we observed mainly similarities 
among the metals and elements’ impact on ASD and ADHD, it could be 
that the two disorders share some neurochemical and neuro-
developmental pathways. The results of this study warrant further 
investigation and replication, as well as studies of combined effects of 
metals/elements and mechanistic underpinnings. 
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