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A B S T R A C T   

Increasing evidence has shown adverse effects of loneliness on cardiometabolic health. The neuromodulator and 
hormone oxytocin has traditionally been linked with social cognition and behaviour. However, recent impli-
cations of the oxytocin system in energy metabolism and the overrepresentation of metabolic issues in psychiatric 
illness suggests that oxytocin may represent a mechanism bridging mental and somatic traits. To clarify the role 
of the oxytocin signalling system in the link between cardiometabolic risk factors and loneliness, we calculated 
the contribution of single nucleotide polymorphisms (SNPs) in the oxytocin signalling pathway gene-set (154 
genes) to the polygenic architecture of loneliness and body mass index (BMI). We investigated the associations of 
these oxytocin signalling pathway polygenic scores with body composition measured using body magnetic 
resonance imaging (MRI), bone mineral density (BMD), haematological markers, and blood pressure in a sample 
of just under half a million adults from the UK Biobank (BMD subsample n = 274,457; body MRI subsample n =
9796). Our analysis revealed significant associations of the oxytocin signalling pathway polygenic score for BMI 
with abdominal subcutaneous fat tissue, HDL cholesterol, lipoprotein(a), triglycerides, and BMD. We also found 
an association between the oxytocin signalling pathway polygenic score for loneliness and apolipoprotein A1, the 
major protein component of HDL. Altogether, these results provide additional evidence for the oxytocin sig-
nalling pathway’s role in energy metabolism, lipid homoeostasis, and bone density, and support oxytocin’s 
complex pleiotropic effects.   

1. Introduction 

Loneliness is a common human experience, described as the aversive 
state that arises from having fewer and less satisfying social relation-
ships than desired (Peplau, 1982). Loneliness is a persistent state for 
15–30 % of the general population (Heinrich and Gullone, 2006). The 
pervasive adverse effects of loneliness became particularly relevant 
during the COVID-19 pandemic as physical distancing rules resulted in a 
decline of in-person social contact, leading to an increase in the preva-
lence of loneliness (Groarke et al., 2020). Along with causing psycho-
logical distress, persistent loneliness is also strongly associated with 

negative somatic health outcomes and mortality (Holt-Lunstad et al., 
2015). In particular, research has linked loneliness with cardiovascular 
mortality (Valtorta et al., 2016) and metabolic syndrome (Henriksen 
et al., 2019), a condition commonly thought to comprise four disease 
risk factors: abdominal obesity, dyslipidaemia, high blood pressure, and 
impaired glucose homoeostasis. A recent phenome-wide investigation of 
the association between a genetic predisposition to loneliness and health 
outcomes found that a genetic propensity to loneliness is associated with 
increased risk for cardiovascular disease and type-2 diabetes. Elevated 
triglycerides and reduced HDL, two elements of dyslipidaemia, were 
also associated with a predisposition to loneliness, along with elevated 
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body mass index (BMI) and body fat (Abdellaoui et al., 2019). 
The oxytocin system is well known for its putative association with 

social dysfunction (Alvares et al., 2016), but growing evidence also 
points to its role in metabolic regulation due to its reported effects on 
appetite, caloric intake, lipolysis, insulin sensitivity, and body weight 
(McCormack et al., 2020). Oxytocin administration has been shown to 
reduce caloric intake in humans (Lawson, 2017; McCormack et al., 
2020; Ott et al., 2013; Striepens et al., 2016; Thienel et al., 2016) and to 
reduce body weight in obese rhesus monkeys (Blevins et al., 2015) and 
rats (Deblon et al., 2011) via decreased food intake and increased energy 
expenditure. Oxytocin’s reported effects on weight loss are also thought 
to occur via its effects on adipocytes, which specifically target adipose 
tissue leaving lean mass undiminished (Altirriba et al., 2014; Boland and 
Goren, 1987). Adipose tissue also helps regulate bone integrity (Amri 
and Pisani, 2016; Lee and Karsenty, 2008), which influences body 
weight control, glucose homoeostasis, and fat metabolism through the 
production of several endocrine factors (Amri and Pisani, 2016; Ferron 
et al., 2008; Lee and Karsenty, 2008). Notably, both osteoblasts and 
osteoclasts (respectively involved in bone synthesis and remodelling) 
express oxytocin receptors (Elabd et al., 2008), and bone mineral density 
(BMD) has been linked to cardiovascular disease (CVD) (Park et al., 
2021; Veronese et al., 2017). This emerging body of research has 
contributed to the suggestion that oxytocin system dysregulation may be 
a mechanism common to both social and metabolic dysfunction (Quin-
tana et al., 2017). 

Candidate gene studies have been a popular approach for investi-
gating oxytocin’s role in social behaviour and loneliness (Lucht et al., 
2009; Roekel et al., 2013), with research primarily focusing on variants 
in the oxytocin receptor gene (OXTR). Genetic studies can be a useful 
way to investigate oxytocin’s influence on multiple phenotypes. How-
ever, given the small influence single gene variants are likely to exert on 
a given trait, conventional candidate gene studies do not typically have 
sufficient statistical power to identify susceptibility with small effects, 
which has led to difficulties replicating many candidate gene study 
findings (Harden, 2021). As there are over 150 genes in the oxytocin 
signalling pathway, a polygenic approach can increase sensitivity for the 
analysis of the role of the oxytocin signalling system as a possible 
common denominator linking loneliness, body composition, and meta-
bolic syndrome risk factors. 

Fat deposit location influences metabolic risk, with fat surrounding 
organs in the abdominal cavity (i.e., visceral adipose tissue), along with 
adipose infiltration (i.e. ectopic fat tissue) most associated with meta-
bolic disturbances (Bergman et al., 2006; Després and Lemieux, 2006). 
As BMI is not particularly sensitive to the distribution of body fat, 
alternative techniques, such as body magnetic resonance imaging (MRI) 
segmentation, are required to measure the individual contributions of 
different fat depots (Beck et al., 2021; Gurholt et al., 2021; Linge et al., 
2019, 2018). In the current study, we use an oxytocin pathway poly-
genic score (PGSoxt) (Winterton et al., 2021) to evaluate the genetic 
contribution of SNPs belonging to 154 genes attributed to the oxytocin 
signalling pathway on cardiometabolic risk factors, including body fat 
distribution and infiltration indexed via body MRI, haematological 
markers, blood pressure, and bone mineral density in a large sample of 
adults from the UK Biobank. Oxytocin-specific polygenic scores for 
loneliness and BMI were calculated and then associated with these 
cardiometabolic risk variables and the differential expression of 
oxytocin-pathway genes was also evaluated to corroborate findings from 
these associations. 

2. Methods 

2.1. Population 

The UK Biobank is a prospective cohort including approximately half 
a million participants (54 % female) in the age range of 40–69 years 
(Sudlow et al., 2015), recruited between 2006 and 2010. All participants 

provided signed informed consent. The UK Biobank has Institutional 
Review Board approval from North West Multi-centre Research Ethics 
Committee and its Ethics Advisory Committee (https://www.ukbiob 
ank.ac.uk/ethics) oversees the UK Biobank Ethics & Governance 
Framework (Miller et al., 2016). Specific details regarding recruitment 
and data collection procedures have been previously published (UK 
Biobank, 2007). Genotyping and initial quality control (QC) of ~ 96 
million variants were performed by Affymetrix (2014). Further QC 
procedures have been described previously (Bycroft et al., 2018). Only 
participants of European British descent were selected for the main 
analysis. The present research has been conducted using the UK Biobank 
Resource under Application no. 27412. An overview of the variables 
used in the main analysis is available in Table 1. Data were used from 
488,377 genotyped individuals, including a subset of 9796 participants 
with available body composition profiles obtained from body MRI and 
274,457 with heel bone mass density measurements. 

2.2. Identifying oxytocin pathway SNPs and tissue gene expression 

Using previously described procedures (Winterton et al., 2021), we 
extracted the approved gene names annotated to the “Oxytocin signal-
ling pathway” from the gene pathway consensus online database 
(ConsensusPathDB, cpdb.molgen.mpg.de) (Kamburov et al., 2013). The 
genomic coordinates (‘chromosome_name’, ‘start_position’, ‘end_posi-
tion’) of the default ENSEMBL transcripts annotated to those gene names 
(filtering on ‘hgnc_symbol’) were retrieved using BiomaRt (host =
’grch37.ensembl.org’, path = ’/biomart/martservice’, dataset = ’hsa-
piens_gene_ensembl’) (Durinck et al., 2009). The transcript regions ob-
tained were complemented with any regulatory elements annotated to 
the same gene names in the ORegAnno (Lesurf et al., 2016) database 
(January 2016 version) for Homo sapiens. All 1000 genomes phase 3 
variants (Auton et al., 2015) found in the European sub-sample and 

Table 1 
Cardiometabolic risk factor variables used from the UK Biobank.  

Variable Count Code Biological relevance 

Abdominal fat ratio 9571 22,434 Distribution between fat and 
muscle volume 

VAT 9749 22,407 Fat depot associated with 
dyslipidaemia 

ASAT 9750 22,408 Long term energy storage 
Weight to muscle 

ratio 
9586 22,433 Capacity to carry one’s own 

weight 
Muscle fat 

infiltration 
9502 22,435 Ectopic fat, tied to metabolic and 

mobility impairments in older 
individuals 

Liver proton density 
fat fraction 

9668 22,436 Ectopic fat in the liver, tied to 
NAFLD, NASH, fibrosis, and 
cirrhosis 

Heel T-score 274,457 78 Assesses bone health, 
osteopenia, and osteoporosis 

Pulse pressure 472,386 4079–4080 Tied to cardiovascular health 
and mortality in older adults 

Cholesterol 469,589 30,690 Dyslipidaemia and 
cardiovascular risk 

LDL 468,706 30,780 Dyslipidaemia and 
cardiovascular risk 

HDL 429,871 30,760 Dyslipidaemia and 
cardiovascular risk 

Triglycerides 469,214 30,870 Dyslipidaemia and 
cardiovascular risk 

Apolipoprotein A1 427,510 30,630 Dyslipidaemia and 
cardiovascular risk 

Apolipoprotein B 467,206 30,640 Dyslipidaemia and 
cardiovascular risk 

Lipoprotein(a) 375,633 30,790 Dyslipidaemia and 
cardiovascular risk 

Glycated 
haemoglobin 
(HbA1c) 

466,504 30,750 Glucose homoeostasis and 
glucose tolerance  
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located within the resulting genomic regions were assigned to the 
Oxytocin signalling pathway. In total 9124 SNPs were identified. Using 
the FUMA GENE2FUNC process (Watanabe et al., 2019, 2017), we 
tested the differential expression of the oxytocin pathway genes 
(retrieved using BiomaRt, as described above) based on GTEx v8 
RNA-seq data (GTEx Consortium, 2015; GTEx Consortium et al., 2017). 
The specific methods used by FUMA can be found in previous reports 
(Watanabe et al., 2019, 2017). 

2.3. Oxytocin pathway polygenic score (PGSoxt) 

We obtained the genotypes of 458,775 individuals of European 
ancestry meeting QC requirements. We calculated two oxytocin 
pathway polygenic scores (PGSoxt) using PRSice-2 (version 2.3.3) 
(Euesden et al., 2015), by limiting the calculation to SNPs belonging to 
the oxytocin signalling pathway, adopting a methodology similar to that 
of a previous report (Darst et al., 2017). Using BMI (Locke et al., 2015) 
and loneliness (Gao et al., 2017) GWAS summary statistics, we calcu-
lated 2000 PGSoxt scores with thresholds ranging from 5 × 10− 8 to 1, in 
increments of 0.001. Using a permutation approach (calculating the 
empirical p-value by obtaining the p-value of association of the best 
p-value threshold and a distribution of best p-value thresholds under the 
null, shuffling the target phenotype 10,000 times) included in PRSice-2 
(Euesden et al., 2015), we determined optimal (controlling for Type 1 
error) PGSoxt thresholds of p < .035 for BMI (resulting in 295 SNPs) and 
p < .011 for loneliness (resulting in 92 SNPs), and used PGSoxt’s 
computed at these thresholds for the main analysis, after a trans-
formation to z-scores. The 10 first principal components of the sample’s 
variance-standardised relationship matrix were annotated alongside the 
PGSs to account for population stratification in the sample itself. We also 
mapped the SNPs included in each PGSoxt using the snp2gene compo-
nent of FUMA (Watanabe et al., 2017) and estimated their enrichment in 
KEGG pathways using DAVID (Huang et al., 2009a, 2009b), confirming 
enrichment for the oxytocin signalling pathway. This procedure helped 
make sure that the subsets of SNPs that are selected by thresholding the 
PGSoxt’s are specifically tied to the oxytocin pathway. The gene lists 
(using the standard gene symbol nomenclature) and the output of the 
enrichment analysis are available in the Supplementary materials 
(Supplementary Tables 1 and 2, Supplementary materials 1–2). 

2.4. Body composition profiles 

To analyse body composition, we used data derived from whole-body 
MRI supplied to the UK Biobank by AMRA (Advanced MR Analytics AB, 
AMRA, Sweden). Detailed methods on how these fields were derived are 
described in previous work (Linge et al., 2018). In short, body and liver 
MRI was acquired on a 1.5 T Siemens MAGNETOM Aera scanner using a 
body dual-echo Dixon Vibe protocol 4.5 and a single-slice multi-echo 
gradient Dixon acquisition 5, respectively (Borga et al., 2015; Wilman 
et al., 2017). Then, a supervised automated segmentation tool was used 
to segment different adipose tissue compartments (Borga et al., 2018; 
Linge et al., 2019, 2018; West et al., 2016). 

We selected several variables describing the distribution of abdom-
inal fat based on their metabolic significance (Britton and Fox, 2011; 
Linge et al., 2019, 2018): visceral adipose tissue volume [VATi – L, 
normalised by height squared following previous literature (Beck et al., 
2022; Gurholt et al., 2021; Heymsfield et al., 2007)], abdominal sub-
cutaneous adipose tissue volume (ASATi – L, also normalised by height 
squared), percentage of muscle fat infiltration (MFI) and liver proton 
density fat fraction (PDFF). In addition, we used the composite variables 
of abdominal fat ratio (total abdominal fat divided by total abdominal 
fat and thigh muscle volume) to assess the distribution of fat and muscle 
volume (Linge et al., 2018), and weight-to-muscle ratio (WMR; kg/L – 
body weight divided by thigh muscle volume) as an index of the ability 
of individuals to carry their weight (Linge et al., 2018). 

2.5. Bone mineral density (BMD) measurement 

To evaluate BMD, we extracted the Heel BMD T-score calculated 
from the calcaneal BMD ultrasound measurement and the value nor-
mally expected in someone of the same sex. The units of the T-score are 
the number of standard deviations that the bone density is above or 
below the standard (Frost et al., 2001) and are used to assess and predict 
bone health, osteopenia and osteoporosis. We chose this measurement 
over raw BMD scores for two main reasons—its broad clinical applica-
tion (Knapp et al., 2001) and the standardisation by sex, which better 
controls for potential sex differences that can influence results in 
oxytocin research (Winterton et al., 2020). 

2.6. Blood biochemistry 

We selected several cardio-metabolically relevant blood assays: total 
cholesterol (mmol/L), HDL cholesterol, LDL cholesterol (mmol/L), tri-
glycerides (mmol/L), apolipoprotein A1 and B (g/L), and lipoprotein(a) 
(nmol/L) to evaluate dyslipidaemia and lipid homoeostasis; and gly-
cated haemoglobin (HbA1c; mmol/mol) as an index for impaired 
glucose homoeostasis, commonly used in assessing glycaemic trends in a 
population over time (Beck et al., 2017). In addition, we selected pulse 
pressure (calculated as the difference between systolic and diastolic 
pressure, averaged from two automated measurements a few moments 
apart, including manual measurements when automatic measurement 
was not available; mmHg) as an index of cardiovascular health, as it 
appears to be a better predictor of both cardiovascular and total mor-
tality in older adults than either mean, systolic or diastolic pressure 
(Glynn et al., 2000). 

2.7. Statistical analysis 

All statistical analyses were done using R version 4.0.0 (2020-04-24) 
(R Core Team, 2020). The code for the analysis performed is made 
available at https://osf.io/hy5aw/. First, to analyse the relationship 
between variables, we computed the pairwise correlations between 
phenotypical variables, and used complete linkage hierarchical clus-
tering on the resulting correlation matrix to identify variable clusters. To 
analyse the relationships between continuous variables, we fitted linear 
regression models, controlling for sex, BMI (following Linge et al., 
2018), age, age squared, and the 10 top principal components from the 
variance-standardised relationship matrix to account for population 
stratification. ASATi, VATi, MFI and liver PDFF were log-transformed 
following testing residual vs. fitted value and due to Q-Q plots 
showing a significant (and consistent) departure from normality (Lum-
ley et al., 2002). Since the heel BMD T-score measure already accounts 
for sex, this was not included in the respective model. FDR correction 
across all tests (N = 32) was used to control for multiple testing at alpha 
= 0.05, as it does not assume independence (Yekutieli and Benjamini, 
1999). Sex was determined from genotyping analysis (UKB data field 
22001). Since PGSs calculated from any set of SNPs will have a non-zero 
effect (Yang and Zhou, 2020), we compared the effect sizes of the 
various PGSoxt models against a distribution of effect sizes from models 
using PGSs calculated from 100 random and unique gene-sets of equal 
size to evaluate the specificity of the results. If the effect sizes from the 
PGSoxt models fell in the lower or upper 5% of the effect size distribu-
tion, it was considered to be specific to the oxytocin pathway. 

3. Results 

3.1. Tissue enrichment in differentially expressed oxytocin pathway genes 

Analysis of the GTEx v8 30-tissue dataset revealed statistically sig-
nificant enrichment of differentially expressed genes (DEG) belonging to 
the oxytocin pathway in muscular tissue, brain tissue, bladder, breast, 
kidney, pancreas, oesophagus (Bonferroni corrected p < .001), heart, 
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salivary gland (Bonferroni corrected p < .01), and skin (Bonferroni 
corrected p < .05) (Fig. 1, Supplementary Table 3). Analysis of the 54- 
tissue dataset from the same donors adds some nuance to these re-
sults. The difference between subcutaneous adipose tissue and visceral 
adipose tissue is particularly notable (Fig. 1, Supplementary Table 4). 

3.2. Pairwise phenotypic correlations and clustering 

Pairwise correlation analyses and complete linkage hierarchical 
clustering revealed weak associations within four main variable clusters: 
one including HDL and apolipoprotein A1, one with cholesterol, LDL, 
and apolipoprotein B, one with liver PDFF, VAT, triglycerides, and 
glycated haemoglobin, and a fourth with ASAT, abdominal fat ratio, 
weight to muscle ratio, and muscle fat infiltration (Fig. 2, Supplemen-
tary Table 7). 

3.3. Linear models 

Comparing the effect sizes of the BMI PGSoxt models (obtained from 
linear models as standardised estimates) to the random gene-set model 
distributions, the effect sizes for the models of ASATi (pfdr=0.04), lipo-
protein(a) (pfdr<0.001), HDL (pfdr=0.008) and heel BMD T-score 
(pfdr<0.001) were among the top 5% of their respective distributions, 
and that for the model of triglycerides (pfdr<0.001) the bottom 5% 
(Fig. 3). For the loneliness PGSoxt models (Fig. 4), the apolipoprotein A1 
model had a significantly (pfdr =0.046, Supplementary Table 6) nega-
tive. association that fell in the lower 5% of the distribution. Results 
from these five BMI PGSoxt models and one loneliness PGSoxt model 
survived FDR correction (Fig. 5; Supplementary Table 5). Associations 
between BMI PGSoxt and apolipoprotein B, total cholesterol and glycated 
haemoglobin, and between loneliness PGSoxt and HDL were also statis-
tically significant but showed effect sizes falling outside the top or 
bottom 5% of their respective random gene-set model distribution. 
Therefore, these associations could not be confidently considered spe-
cific to the oxytocin pathway. The rest of these models were neither 
statistically significant nor specific to the oxytocin signalling pathway. 

4. Discussion 

The present results, derived from a large sample of adults, provide 
evidence for an association between loneliness and BMI polygenic scores 
computed exclusively for oxytocin signalling pathway genes, and a se-
ries of traits related to lipid homoeostasis and body composition. 
Importantly, permutation analyses demonstrated specificity for many of 
these associations to the oxytocin signalling pathway. The associations 
between PGSoxt for BMI and abdominal subcutaneous adipose tissue and 
blood lipids (e.g., HDL and triglycerides) are congruous with the sug-
gested link between oxytocin and energy homoeostasis, body fat 

Fig. 1. a) Differentially expressed genes (DEG) in the oxytocin pathway in GTEx v8 (30 general tissue types) on a scale of -log10(p-value), divided by organ system, 
mapped on a representation of the human body. b) Significantly enriched DEG sets of the oxytocin pathway (pbonf < 0.05), based on) GTEx v8 (54 tissue types) are 
highlighted in yellow, non-significant sets in purple. Raw output is provided in Supplementary Tables 3 and 4. 

Fig. 2. Correlation heatmap of all the phenotypes analysed, with hierarchical 
clustering. 4 main clusters were identified (squares with bold outlines). HDL – 
High Density Lipoprotein, PP – Pulse Pressure, LDL – Low Density Lipoprotein, 
BMD – Bone Mineral Density, VATi - Visceral Adipose Tissue volume, ASATi – 
Abdominal Subcutaneous Adipose Tissue volume, HbA1c – glycated 
haemoglobin. 
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metabolism, and body fat distribution (Leng and Sabatier, 2017; Win-
terton et al., 2020). An increased genetic load for higher BMI has been 
associated with increased subcutaneous fat, which unlike visceral adi-
pose tissue, is not directly associated with insulin resistance (Alvehus 
et al., 2010) and elevated triglycerides (Porter et al., 2009), two com-
ponents of metabolic syndrome. Subcutaneous adipose tissue is a fat 
depot specialised to provide long-term nutrient storage (Tchkonia et al., 
2013), acting as a sink to sequester fatty acids. When subcutaneous fat is 
removed in mice, there is an increase of visceral fat mass, insulin 
resistance, circulating insulin, and TNF-α; while reimplantation of sub-
cutaneous fat reverses these effects (Ishikawa et al., 2006). This is in line 
with the interpretation of different adipose depots as metabolically 
different endocrine organs (Tchkonia et al., 2013). This finding is sup-
ported by the results of our tissue expression enrichment analysis, which 
demonstrates an enrichment of oxytocin pathway genes in subcutaneous 
adipose tissue (as opposed to visceral fat) and is consistent with previous 
findings in mice where oxytocin administration reduced visceral and 
liver fat (Maejima et al., 2011). The observed association between BMI 
PGSoxt and abdominal subcutaneous fat is also in line with the associa-
tions between HDL and BMI PGSoxt, with HDL considered protective for 
cardiovascular events (Ali et al., 2012). In addition, the BMI PGSoxt was 
inversely associated with triglycerides, which is in agreement with 
elevation in HDL and the metabolic role of subcutaneous fat. The link 
between oxytocin signalling and BMD is also consistent with the 

evolutionarily ancient role of osteocytic bone tissue in energy meta-
bolism (Haridy et al., 2021). This relationship is maintained in humans 
and appears to be reciprocal (Dirckx et al., 2019; Lee and Karsenty, 
2008), which points to common regulatory mechanisms, such as the 
oxytocin system. 

The negative association between the loneliness PGSoxt and apoli-
poprotein A1, which exerts a protective effect on cardiovascular disease, 
provides further evidence for pleiotropic effects of oxytocin gene vari-
ants on both energy homoeostasis and social behaviour. In other words, 
genetic variants in the oxytocin signalling pathway that are associated 
with loneliness are also linked with energy homoeostasis. Given oxyto-
cin’s secretion into both the central nervous system and the periphery, 
the oxytocin system is well-placed to coordinate both behaviour and 
energy regulation (Quintana and Guastella, 2020). Loneliness is also 
linked to reduced physical activity (Hawkley et al., 2009; Philip et al., 
2020), which in turn negatively affects BMD (Benedetti et al., 2018) and 
lipid homoeostasis (Association, 2003; Delavar et al., 2011). Altogether, 
these results suggest a potential mechanism for how the oxytocin system 
integrates physiological and behavioural processes to regulate energy 
requirements (Quintana and Guastella, 2020). Moreover, the results 
highlight the treatment potential for stimulating the oxytocin system via 
intranasal administration. 

This study had some limitations worth noting. First, it is conceivable 
that part of the observed genetic pleiotropy could be explained by 

Fig. 3. Effect size distributions for the BMI PGSoxt models (red confidence intervals) and random gene-set PGS models (grey confidence intervals). Highlighted in red 
for each distribution are the upper and lower 5 % to identify the effects specific to the oxytocin pathway. HDL – High Density Lipoprotein, LDL – Low Density 
Lipoprotein, BMD – Bone Mineral Density. 

Fig. 4. Effect size distributions for the Loneliness PGSoxt models (blue confidence intervals) and random gene-set PGS models (grey confidence intervals). High-
lighted in blue for each distribution are the upper and lower 5 % to identify the effects specific to the oxytocin pathway. HDL – High Density Lipoprotein, LDL – Low 
Density Lipoprotein, BMD – Bone Mineral Density. 
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population stratification and non-random sample selection in the orig-
inal GWAS’ (e.g., due to varying exclusion criteria related to somatic 
conditions for patients and healthy controls or general phenotypic cor-
relations in the population that may or may not be due to overlapping 
mechanisms). We addressed this potential issue by using a careful 
quality control procedure for the genetic analysis and controlling for 
population stratification in our models. Second, a sex-disaggregated PGS 
score might have accounted for sex-specific confounders (Flynn et al., 
2020), which is relevant for oxytocin research (Winterton et al., 2020). 
To address this, we adjusted for sex in our models and used T-scores for 
our BMD measures. Third, polygenic approaches cannot explain the 
biological mechanisms that underlie the relationships found, as PGSs 
assume an additive effect of individual alleles and do not model higher 
order relationships between variants. Fourth, the various phenotypes 
have unequal sample-sizes: comparatively few participants of UK Bio-
bank had body MRI measures compared to the other measures, leading 
to decreased statistical power, which is of particular importance in 
studies seeking to find small effect sizes. On the other hand, the large 
sample size for the other phenotypes is one of the strengths of the study, 
along with using standardised methods and the inclusion of novel body 
composition measures. 

Altogether, these results provide evidence for the involvement of the 
oxytocin pathway in energy metabolism, lipid homoeostasis and stor-
age, bone density, and mental states such as loneliness in humans, 
hinting at complex pleiotropy and interconnected effects. These findings 
are in line with the notion that oxytocin plays a role in both social 
behaviour and metabolic traits. Moreover, this research provides a 
starting point for further research to elucidate these mechanisms and 
potentially find therapeutic applications of oxytocin in a broad range of 
conditions characterised by social and metabolic dysfunction, such as 
schizophrenia and autism spectrum disorders. 
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Marette, A., Matise, T.C., McKenzie, C.A., McKnight, B., Moll, F.L., Morris, A.D., 
Morris, A.P., Murray, J.C., Nelis, M., Ohlsson, C., Oldehinkel, A.J., Ong, K.K., 
Madden, P.A.F., Pasterkamp, G., Peden, J.F., Peters, A., Postma, D.S., Pramstaller, P. 
P., Price, J.F., Qi, L., Raitakari, O.T., Rankinen, T., Rao, D.C., Rice, T.K., Ridker, P. 
M., Rioux, J.D., Ritchie, M.D., Rudan, I., Salomaa, V., Samani, N.J., Saramies, J., 
Sarzynski, M.A., Schunkert, A.E., Schwarz, P.E.H., Sever, P., Shuldiner, A.R., 
Sinisalo, J., Stolk, A.J.M., Strauch, K., Tönjes, A., Trégouët, D.-A., Tremblay, A., 
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