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Physical growth is an indicator and predictor of both present 
and future health. Deviations from a child’s growth trajectory 
may indicate health issues with lifelong implications. Growth 

in infancy and early childhood is thus monitored closely by par-
ents and health care professionals. Body mass index (BMI) changes 
substantially with age following a characteristic pattern. From 
birth, BMI increases rapidly until it reaches a maximum at the age 
of 9 months, followed by a gradual decline towards a minimum at 
around 5–6 years of age. These two points are often labelled the adi-
posity peak (AP) and adiposity rebound (AR)1,2, respectively. Early 
increase in BMI is associated with diabetes, earlier puberty, risk of 
obesity in adolescence and adulthood, a major public health issue 
worldwide3–5, and the many complications that follow. Only 38% 
of adults with class II/III obesity (BMI ≥ 35 kg/m²) have normal 
weight during childhood6, and 90% of all children defined as obese 
at age 3 years remain obese during adolescence7. As sustainable 
weight reduction has proved difficult8, proactive therapeutic strat-
egies enabling early prevention of obesity are sorely needed; thus, 
a better understanding of the fundamental mechanisms regulating 
early growth is needed.

Heritability estimates for BMI in twin studies range from 40% 
to 70% and vary with age9,10. Genetic variants strongly influence 
the risk of obesity, in a complex relationship with behavioural and 
lifestyle factors11. Common genetic variants explain 17% to 27% of 

the heritability of BMI12–14. The genetics of early weight develop-
ment is therefore of prime scientific interest for children’s health, 
but also as a predictor for adult obesity. The largest genome-wide 
association studies (GWAS) on adult BMI identified 941 inde-
pendent loci in over 700,000 individuals, explaining ~6% of the 
phenotypic variation15. In children, where sample sizes have been 
much smaller, considerably less is known about the genetics of 
BMI. Recent meta-analyses suggest an overlap with adult BMI16–18, 
while studies estimating age-dependent genetic contribution have 
revealed low correlation in infancy and early childhood that gradu-
ally increases with age12. Additionally, transient genetic association 
with early BMI during infancy and early childhood has been identi-
fied by us and others19,20, suggestive of rapid changes in the genetic 
architecture of BMI during early growth. Still, how the genetics of 
BMI transitions from birth to AR, where the genetic signature of an 
adult-like obesity emerges, remains unknown.

While GWAS performed in very large numbers of adults have 
been highly successful in discovering common variants of small 
effect sizes, studies on children with morbid obesity have been more 
successful at identifying rare genetic variants causing early-onset 
monogenic and syndromic forms of obesity21,22. Recently, there  
has been a growing recognition that monogenic and polygenic 
forms of obesity are not discrete entities. Genetic studies point 
towards shared biological pathways and the influence of both rare 
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and polygenic variation to disease risk at both ends of the spec-
trum23–25. A recent investigation of severe childhood obesity found 
an excess burden of rare, predicted deleterious, variants involving 
genes near adult obesity loci26. Variants with different penetrance 
were detected in genes in the leptin–melanocortin pathway, a major 
determinant of satiety and energy expenditure. Interestingly, GWAS 
suggest that the leptin–leptin receptor (LEP–LEPR) axis is also cen-
tral to BMI development during infancy and childhood19,20.

In this study, we investigated the association of common varia-
tion with BMI from birth to 8 years of age through a longitudi-
nal analysis in the Norwegian Mother, Father and Child Cohort 
Study (MoBa)27. Using this unique pregnancy-based open-ended 
cohort with dense harmonized phenotypes and genotypes from 
both parents and children, we present a detailed characterization 
of the rapidly changing genetic landscape of BMI during the first 
8 years of life.

Results
BMI from 28,681 children was measured at birth, 6 weeks, 3, 6 and 
8 months, and 1, 1.5, 2, 3, 5, 7 and 8 years of age (Supplementary 
Table 1). At each time point, we conducted linear mixed-model 
regression analyses on standardized BMI under an additive genetic 
model, followed by approximate conditional and joint (COJO) 
multiple single-nucleotide polymorphism (SNP) analyses to iden-
tify independent signals28, resulting in 46 independent loci reach-
ing genome-wide significance (P < 5 × 10−8) for at least one time 
point (Table 1 and Supplementary Table 2). Of these, 29 are novel, 
that is, they do not have any nearby proxy SNPs (R2 > 0.6) that are 
genome-wide significant in recent meta-analyses of birth weight 
and adult BMI15,29.

Four major association trajectory clusters. We investigated the 
dynamics of the associations for the 46 loci by projecting their 
estimated effect sizes over time onto a basis of reference profiles 
(Fig. 1). We also compared the effect size estimates with published 
meta-analyses at birth29 (Fig. 2), investigated the long-term associa-
tion of the 46 loci during adolescence in the Avon Longitudinal Study 
of Parents and Children (ALSPAC) cohort1,30 (Fig. 3), and in adult-
hood from parents in MoBa and published summary statistics of 
BMI15 (Fig. 2). The variants displayed different trajectories (Fig. 1c),  
demonstrating how the genetics of early childhood BMI is an 
age-dependent combination of interweaved signals. We define four 
major clusters of profiles (Fig. 1e and Methods), which we hypoth-
esize to represent distinct biological processes.

The ‘birth’ cluster represents nine loci previously associated 
with birth weight29. Our longitudinal analysis showed that the 
association near SH2B3, CCNL1, GPSM1, GCK and DLG4 quickly 
vanishes after birth, indicating that these loci are conferring pure 
prenatal influences, while loci near ESR1, DLK1 and HHEX seem 
to influence growth also postnatally (Figs. 1 and 2). The trajectory 
of ADCY5, known primarily as a type 2 diabetes (T2D) locus, is 
remarkable in presenting a strong association at birth that persists 
during infancy and childhood, but almost no association with adult 
BMI15 (Figs. 2 and 3).

The ‘transient’ cluster represents 21 independent signals with no 
effect at birth, a peak association during infancy or early childhood, 
and little or no effect after the AR. None of the SNPs in this cluster 
reach genome-wide significance (P < 5 × 10−8) in the largest adult 
BMI meta-analysis to date15 (Figs. 1 and 2), and among SNPs that 
reached P < 1 × 10−5, three of four have an opposite direction of effect 
on BMI in adulthood compared to infancy (LEPR (rs10493377), 
MLXIPL (rs17145750) and KLF14 (rs287621)). Conversely, of the 
variants previously implicated in birth weight, only one (PTCH1 
(rs28457693)) is present in this cluster. Thus, this cluster represents 
biological mechanisms with distinct effects on BMI development in 
infancy and childhood. The other phenotypes associated with the 

loci in this cluster are primarily anthropometric traits (Fig. 1 and 
Supplementary Table 3), yet the majority (11 of 21) are not known 
to be associated with adult traits.

The ‘early rise’ cluster represents 12 loci showing a gradually 
stronger association with BMI from infancy into childhood, pla-
teauing around AR and maintaining some effect until age 7 to 8 
years. This cluster includes variants associated with self-estimated 
comparative height and size at age 10 years in the UK Biobank, 
as well as traits related to adult body composition, which sup-
ports the hypothesis of a more persisting effect. However, while 
the effect sizes for approximately half of the variants in this cluster 
are consistent throughout adolescence and towards adulthood, the 
effect vanishes for the other half. Eventually, only two SNPs in this 
cluster (ADCY3 (rs11676272) and TNNI3K (rs10493544)) reach 
genome-wide significance in the largest adult BMI study15, while 
one SNP (AC105393.2 (rs77165542)) with no proxy in Yengo et al.15 
showed an association with BMI in the parents in MoBa, and the 
nine others showed no association with adult BMI per se (Figs. 1 
and 2).

The ‘late rise’ cluster, represents four loci (FTO (rs17817288), 
MC4R (rs78263856), SEC16B (rs545608) and FAIM2 (rs7132908)) 
that show little to no association before AR where they exhibit a 
rapid increase contrasting with the other clusters. The variants in 
the late rise cluster are in high linkage disequilibrium (LD) with loci 
reported in a previous study on childhood BMI consisting mainly of 
children measured at ages 6 to 10 years16 and with adult BMI15 (Fig. 2).  
The observed upward trajectory thus yields effects that seem to per-
sist during adolescence and remain significant into adulthood.

Effect trajectories of known birth weight and adult body mass 
index SNPs. The density of the overall distribution of trajectory 
profiles in MoBa for all previously detected birth weight and adult 
BMI SNPs15,29 along with the density of the 46 early growth loci 
detected in this study is depicted in Fig. 1h: the trajectories for birth 
weight and adult BMI segregate to the left and right sides of the 
space defined by the reference profiles, respectively, while the early 
growth BMI is dominated by transient profiles. In contrast to the 
association profiles in the birth cluster, the birth weight variants 
mostly display trajectories persisting or rising throughout child-
hood. Conversely, variants associated with adult BMI presented a 
strong concentration of late rising profiles, suggesting that better 
power at late ages would provide a higher number of variants in 
this cluster.

Trajectory agreement between the MoBa and ALSPAC cohorts. 
The trajectories of the effect size estimates are generally consistent 
between the two cohorts (Fig. 3 and Extended Data Fig. 1). However, 
ALSPAC estimates in early childhood present high s.e. values due to 
smaller sample sizes especially during infancy and early childhood 
(Supplementary Table 1). Despite this modest power, a sign test 
showed that the directions of effect at the peak-effect time points 
from the MoBa cohort are highly consistent between MoBa and 
ALSPAC, both cumulatively (n = 40/45 consistent, P < 10−7) and for 
each of the four clusters (birth, 9/9; transient, 18/20; early rise, 9/12; 
late rise, 4/4). A considerably larger sample size is needed to enable 
formal replication at individual loci.

SNP heritability and genetic correlation. We estimated SNP-based 
heritability and genetic correlation between various traits and BMI 
at all time points using LD score regression. The heritability esti-
mates vary with age in a pattern mirroring childhood BMI curves 
(Extended Data Fig. 2 and Supplementary Table 4). Overall, the 
phenotypes assessed displayed age-dependent genetic correlation 
patterns with BMI, with lower correlation from 6 months to 3 years 
(Extended Data Fig. 3 and Supplementary Table 4). Birth weight 
adjusted for maternal effect presented a high genetic correlation 
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Table 1 | Association summary statistics for the top hits

Name SNP Chr Position EA OA EAF Age Beta s.e. P value Cluster

LEPR rs10493377 1 65,879,252 A G 53% 1.5 y 0.057 0.010 2.20 × 10−9* Transient

LEPR rs10889551 1 65,906,137 G A 65% 1 y 0.088 0.010 5.20 × 10−19* Transient

LEPR rs2767486 1 65,991,203 G A 16% 6 m 0.143 0.012 6.40 × 10−34* Transient

TNNI3K rs10493544aBMI 1 74,983,835 T C 43% 8 m 0.054 0.009 1.40 × 10−8 Early rise

SEC16B rs545608aBMI 1 177,899,121 C G 23% 8 y 0.088 0.016 3.20 × 10−8 Late

NR5A2 rs2816985 1 200,072,966 G A 45% 3 m 0.059 0.009 5.40 × 10−11 Transient

AC105393.2 rs77165542 2 430,975 C T 98% 1.5 y 0.187 0.032 3.50 × 10−9 Early rise

ADCY3 rs11676272aBMI 2 25,141,538 G A 49% 1 y 0.089 0.009 2.80 × 10−22 Early rise

ADCY5 rs11708067BW 3 123,065,778 G A 23% Birth 0.079 0.010 5.20 × 10−16 Birth

CCNL1 rs1482853BW 3 156,798,473 C A 60% Birth 0.099 0.008 5.90 × 10−32 Birth

LCORL rs2610989BW 4 18,022,834 T C 26% 1.5 y 0.060 0.011 5.50 × 10−8* Early rise

HHIP rs1032296 4 145,434,688 T C 38% 6 m 0.052 0.009 1.10 × 10−8 Transient

PCSK1 rs6899303 5 95,650,975 C A 63% 6 m 0.057 0.009 5.30 × 10−11* Transient

PCSK1/CAST rs263377 5 95,884,775 A G 41% 1 y 0.054 0.010 2.90 × 10−8* Transient

GLP1R rs2268657 6 39,020,542 T C 51% 3 m 0.056 0.009 8.40 × 10−10* Transient

GLP1R rs2268647 6 39,043,178 T C 50% 1 y 0.048 0.009 2.60 × 10−7* Transient

GLP1R rs1820721 6 39,110,046 A C 49% 6 m 0.061 0.009 7.20 × 10−12* Transient

UBE3D rs209421 6 83,523,684 G T 26% 6 m 0.073 0.010 5.40 × 10−13 Transient

ESR1 rs7772579BW 6 152,042,502 A C 70% Birth 0.065 0.009 5.90 × 10−13 Birth

OPRM1 rs1772945 6 154,312,285 A G 56% 8 m 0.056 0.009 3.20 × 10−9 Transient

GCK rs78412508BW 7 44,223,858 G A 99% Birth 0.376 0.047 4.00 × 10−15 Birth

MLXIPL rs17145750 7 73,026,378 C T 84% 6 m 0.070 0.012 6.80 × 10−9 Transient

LEP rs10487505 7 127,860,163 C G 49% 1.5 y 0.056 0.009 3.20 × 10−9 Early rise

KLF14 rs287621 7 130,435,181 T C 26% 6 m 0.064 0.010 3.70 × 10−10* Transient

KLF14 rs12672489 7 130,483,555 C T 75% 1.5 y 0.067 0.011 2.10 × 10−9* Early rise

HNF4G rs117212676 8 76,632,003 A G 2% 6 m 0.166 0.030 1.80 × 10−7* Early rise

PTCH1 rs28457693BW 9 98,217,348 G A 13% 6 m 0.073 0.013 2.40 × 10−8 Transient

GPSM1 rs28642213BW 9 139,248,082 A G 27% Birth 0.062 0.010 4.70 × 10−11 Birth

HHEX rs11187129BW 10 94,429,907 C T 46% Birth 0.047 0.008 2.10 × 10−8 Birth

PLCE1 rs1830890 10 96,019,501 G A 32% 3 y 0.067 0.012 1.30 × 10−8 Early rise

SCGB1A1 rs1985927 11 62,193,537 C T 73% 8 m 0.060 0.011 6.80 × 10−9 Early rise

EHBP1L1 rs2298615 11 65,352,062 T C 23% 6 w 0.071 0.012 5.40 × 10−9 Transient

RP11-405A12.2 rs2728641 12 20,111,569 C T 48% 3 m 0.050 0.009 1.90 × 10−8 Transient

FAIM2 rs7132908aBMI 12 50,263,148 A G 40% 8 y 0.081 0.014 3.30 × 10−9 Late rise

RP11-690J15.1 rs6538845 12 98,544,888 C T 48% 3 m 0.055 0.009 1.50 × 10−9 Early rise

SH2B3 rs7310615Both 12 111,865,049 G C 55% Birth 0.050 0.009 6.50 × 10−9 Birth

NCOR2 rs3741508 12 124,812,678 T G 86% 8 m 0.083 0.013 1.20 × 10−9 Transient

DLK1 rs75806555 14 101,189,448 C T 86% Birth 0.074 0.012 2.10 × 10−9 Birth

SH3GL3 rs2585058 15 84,284,552 G A 53% 8 m 0.063 0.009 8.60 × 10−12 Transient

FTO rs17817288aBMI 16 53,807,764 G A 49% 8 y 0.095 0.013 1.30 × 10−12 Late rise

KIAA0895L rs111810144 16 67,216,110 T C 3% 8 m 0.147 0.025 5.20 × 10−9 Early rise

DLG4 rs739669BW 17 7,122,377 A G 62% Birth 0.072 0.009 4.70 × 10−17 Birth

MC4R rs78263856aBMI 18 58,042,821 T C 95% 7 y 0.150 0.027 3.80 × 10−8 Late rise

RIN2 rs148252705 20 17,851,179 T C 97% 3 m 0.157 0.029 2.60 × 10−8 Transient

EFCAB8 rs13038017 20 31,467,551 C T 53% 1 y 0.054 0.009 1.20 × 10−8 Early rise

PTCHD1-AS rs5926278 X 23,296,291 T C 2% 3 m 0.149 0.027 4.80 × 10−8 Transient

An asterisk denotes a locus with multiple signals, independent and significant after COJO analysis. BWVariant associated with birth weight (BW) according to Warrington et al.29. aBMI Variant associated 
with adult BMI (aBMI) according to Yengo et al.15. Both Variant associated with both birth weight and adult BMI according to Warrington et al.29 and Yengo et al.15, respectively. Loci are ordered according 
to chromosomal position. SNP, rsID of the SNP with lowest P value at age at peak association. Chr and Position, chromosome and position of the SNP in GRCh37 coordinates. EA, effect allele; OA, other 
allele; EAF, effect allele frequency estimate in MoBa, where the effect allele is the BMI-raising allele at age of peak association. Age, age at peak association defined as the age with the lowest association 
P value. Name, locus name based on the nearest gene or previous naming in the literature. Beta, s.e. and P value denote the effect size, standard error and unadjusted P-value estimates for the association 
with standardized BMI at age at the peak, respectively. Cluster, cluster corresponding to the effect size profile over time. Membership to multiple-signal loci and previous association of the lead SNP with 
BW according to Warrington et al.29, aBMI from Yengo et al.15 or both are annotated with superscripts. See Supplementary Table 1 for the number of samples at each time point and the Methods for the 
statistical analysis.

Nature Metabolism | VOL 4 | March 2022 | 344–358 | www.nature.com/natmetab346

http://www.nature.com/natmetab


ArticlesNaTurE METabolISm

with BMI at birth (rg = 0.89, s.e. = 0.061, P < 1 × 10−47) that decreased 
quickly in infancy and throughout childhood, whereas for indirect 
maternal effects, the correlation was initially lower but increased 
from 1 year onwards. While obesity-related traits in general show 
constant correlation levels before accelerating at 3 years, compara-
tive body size at age 10 in the UK Biobank, in which participants 
reported being thinner or plumper than average at age 10 years, pre-
sented a rapid linear increase throughout development from birth 
to 7 years (rg = 0.86, s.e. = 0.06, P < 9 × 10−53), which is in line with 
the observed overlap of this phenotype with the early and late rise 
clusters. Higher childhood BMI correlates with younger age of men-

arche and taller stature in early puberty, indicating a strong genetic 
correlation between childhood BMI and early pubertal develop-
ment. Despite 11 of the 46 top hits having previously been associ-
ated with adult height (Supplementary Table 3), the overall genetic 
correlation with adult height is close to zero for all time points. The 
well-known inverse relationship of T2D with fetal growth vanishes 
quickly after birth and the genetic correlation of BMI with glycae-
mic traits varies rapidly throughout childhood.

Monogenic obesity and the leptin–melanocortin pathway. We 
further investigated whether genes involved in monogenic obesity 
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in a cluster mapping a given pathway. ECM, extracellular matrix. g, Comparisons with other GWAS present in PhenoScanner. Bars represent the number of 
variants associated with a trait (P value = 5 × 10−8). IBD, inflammatory bowel disease. h, Angular density of beta profiles for variants associated with birth 
weight (blue) and adult BMI (red), compared to early BMI (green) according to refs. 15,29 and this study, respectively, and processed as in b. See ‘Clustering 
of association profiles’ for details on how the different panels are built. See Supplementary Table 1 for the number of samples at each time point.

Fig. 2 | Comparison with previous studies on birth weight and adult BMI. a, Heat map of the effect size for the 46 top hits from birth to adulthood. 
Variants are ordered vertically according to Fig. 1c. The estimated effect size for association with birth weight (Warrington et al.29; column 1), BMI during 
early growth (this study, MoBa cohort, columns 2–12), BMI during preadolescence and adolescence (this study, ALSPAC cohort, columns 13–17) and 
adult BMI (this study, mothers and fathers of the MoBa cohort (columns 18–19) and Yengo et al.15 (column 20)) is displayed in each cell. The cell colour 
represents the estimated effect size and the text colour represents the unadjusted P value. Empty cells indicate that no proxy could be found for the given 
variant in the given study (Methods). b, Estimated effect size for association with birth weight29 and adult BMI15 plotted against the estimated effect size 
at the age of peak association during early growth (this study). The dashed lines indicate equal effect sizes in both studies. The colour represents the age 
of peak association, as defined as the age with the lowest P value. Variants are grouped according to their profile cluster as defined in Fig. 1e. Thick and 
thin error bars represent one s.e. value on each side of the effect size estimate and 95% confidence intervals, respectively. For the sake of readability, GCK 
at birth is plotted in an insert with a different scale, and the axes might crop the 95% confidence intervals. See Supplementary Table 1 for the number of 
samples at each time point and Methods for the statistical analysis.
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are overrepresented in the vicinity of the loci. Of 42 genes used in 
routine testing for monogenic and severe early-onset obesity, seven 
resided within 250 kb of one of the 46 top hits (overrepresentation 

P < 1.01 × 10−7; Supplementary Table 5). Six of these seven genes 
encode proteins participating in the leptin–melanocortin pathway 
(LEP, LEPR (three signals), PCSK1 (two signals), POMC, ADCY3 
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and MC4R) providing compelling support for the importance of 
this pathway also in normal growth. Apart from MC4R, the associ-
ated variants belong to the transient and early rise clusters, showing 
that mechanisms at play act very early after birth, some of which in 
a narrow age window (Extended Data Fig. 4).

Key roles for variants in the LEP and LEPR loci. The strongest 
association with BMI across all time points was the intronic vari-
ant rs2767486 with peak association at 6 months in the LEPR locus 
(transient cluster; EAF = 16%; β = 0.14, s.e. = 0.012, P < 6.4 × 10−34), 
presenting a transient association profile that peaked at 6 months, 
in agreement with previous reports19,20. COJO multiple-SNP 
analysis revealed two additional independent signals in this locus 
(Supplementary Table 6 and Extended Data Fig. 5). The previously 
described association with rs10487505 in LEP19 was assigned to the 
early rise cluster. Its child BMI-increasing allele is associated with 
lower plasma leptin levels adjusted for BMI in adults31, and our 
results suggest that the association with BMI is specific to childhood.

Established BMI variants near ADCY3 and MC4R. Both ADCY3 
and MC4R are implicated in Mendelian forms of obesity and poly-
genic BMI in adults and children and expressed in the hypothalamus 
where they are important for central regulation of energy homeo-
stasis15,32–34. The well-known nonsynonymous variant rs11676272 
in ADCY3 was the second strongest locus overall for infant and 
childhood BMI, peaking at 1 year (early rise cluster). The variant 
rs78263856 upstream of MC4R belongs to the late rise cluster, with 
effects on BMI appearing from 2 years of age, peaking at 7 years and 
lasting into adult life (Fig. 2).

Novel variants near PCSK1. We identified two independent loci 
near the monogenic obesity gene PCSK1 (refs. 35,36; belonging to 
the transient cluster) (Extended Data Fig. 5). PCSK1 encodes the 
prohormone convertase 1/3 (PC1/3), highly expressed in the hypo-
thalamic arcuate nucleus regulating food intake and body weight37. 
No previous phenotypic associations are reported for the lead SNP 
rs6899303, but the variant is a strong protein quantitative trait locus 
for PC1/3 (ref. 38). The second signal, tagged by rs263377, displays its 
strongest association at 1 year (transient cluster), and associates with 
multiple adult anthropometric traits including fat-free body mass in 
the UK Biobank (P < 1.84 × 10−9). None of the two variants are in 
LD with the PCSK1 missense variant rs6235 associated with insulin 
and adult BMI-related traits23. The hypothalamic PC1/3 expression 
is high in two leptin-sensitive neuronal populations: proopiomela-
nocortin (POMC)-expressing neurons, and neuropeptide Y (NPY) 
and agouti-related peptide (AgRP)-expressing neurons. In the 
periphery, PC1/3 is highly expressed in specific ghrelin-expressing 
endocrine cells in the stomach, the alpha and beta cells of the islets 
of Langerhans in the pancreas, and various intestinal enteroendo-
crine cells. These play an important role in appetite, glucose homeo-
stasis and nutrient assimilation by secreting several PC1/3 products 
including ghrelin, insulin and proglucagon-derived peptides such 
as the hormone glucagon-like peptide 1 (GLP-1).

Three novel variants in GLP1R with effects on infant body mass 
index. GLP-1 is released in the small intestines in response to food 
intake. It interacts with glucagon-like peptide 1 receptor (GLP1R), 
abundant in hypothalamic regions regulating feeding behavior39, 

inducing satiety. It is an incretin with insulinotropic effects in 
response to oral food intake. GLP-1 improves glucose-stimulated 
insulin secretion by interacting with the beta cell GLP1R. We identi-
fied three independent signals at the GLP1R locus belonging to the 
transient cluster (Extended Data Fig. 5). The strength of association 
increased for all three variants when analysed together, in particular 
for rs1820721 (at 6 months, PCOJO < 5.3 × 10−21). None of the three 
SNPs have been associated with childhood or adult BMI. However, 
the BMI-increasing alleles at rs2268657 and rs2268647 are both 
associated with lower GLP1R expression in stomach, pancreas, and 
adipose tissues (Genotype-Tissue Expression). Interestingly, the 
BMI-increasing allele at rs2268657 has previously been associated 
with faster gastric emptying rate40, suggesting that GLP1R variants 
may affect childhood BMI through higher digestion rate, in line 
with its function in the treatment of T2D.

Maternal influences at birth for SH2B3, HHEX and ADCY5. For 
each of the 46 independent loci, we extended the association model 
using the parental genotypes, and conducted child–mother–father 
trio-resolved and haplotype-resolved analyses. For most loci, the 
child effect at peak association remains after conditioning on the 
maternal and paternal genotypes, with no noticeable parental effect 
(Fig. 4). However, for five variants, different patterns emerged: three 
loci from the birth cluster SH2B3 (rs7310615), HHEX (rs11187129) 
and ADCY5 (rs11708067), and two from the transient cluster near 
KLF14 (rs287621 and rs12672489).

For the ADCY5 and HHEX loci, associated with T2D and birth 
weight, respectively, the trio analysis demonstrated opposing fetal 
and maternal effects, as already observed for birth weight29, and no 
effect from the father (Supplementary Table 7). This differs from 
the SH3B2 locus, where the trio analysis indicated a dual and direc-
tionally consistent effect from both maternal and fetal alleles on 
birth BMI. The association trajectory of these three birth weight 
loci illustrates how the maternal genome provides heterogeneous 
indirect effects on fetal growth that vanish after birth with different 
dynamics (Fig. 4 and Supplementary Table 7).

Age-dependent association with imprinting patterns near KLF14. 
We identified two variants associated with childhood BMI upstream 
of KLF14, rs287621 and rs12672489, separated by a recombination 
hotspot. Maternal imprinting has been demonstrated for KLF14 
in T2D41, with risk alleles associated with increased fasting insu-
lin, reduced high-density lipoprotein cholesterol and decreased 
expression in adipocyte in adults, only when inherited from moth-
ers41,42. Our haplotype analysis revealed that the association for 
both variants is driven by the maternally inherited allele through-
out infancy, with little to no contribution from the paternal allele 
and the non-transmitted alleles (Fig. 4 and Supplementary Table 
7), consistent with imprinting effects. While rs287621 is associated 
with several adult phenotypes, the strongest known association for 
rs12672489 is comparative body size at age 10 in the UK Biobank 
(P < 3.5 × 10−7), showing that this variant influences childhood 
growth despite residing outside the region critical for adult traits. 
Expression quantitative trait locus studies have linked variants to 
the abundance of KLF14 transcripts in adipose tissue43 and a vari-
ant near KLF14 has been associated with lower plasma leptin lev-
els44, offering a mechanistic hypothesis and yet another putative link 
between leptin regulation and weight gain in infancy.

Fig. 3 | MoBa effect trajectories overlayed with association profiles obtained from ALSPAC. a–e, Effect size estimates for rs11708067 in ADCY5 (a), 
rs2767486 in LEPR (b), rs1820721 in GLP1R (c), rs287621 in KLF14 (d) and rs17817288 in FTO (e) obtained in the MoBa and ALSPAC cohorts. The quadrant 
plots (left) display the shape of the effect size estimate over time as obtained in Fig. 1b, for both cohorts, between birth and 8 years of age. The effect size 
estimates are plotted at each age (right) using the line and ribbons for MoBa and the point and error bars for ALSPAC. To maintain readability of earlier 
time points, the scale of the x axis is not linear. Thick and thin error bars/ribbons represent one s.e. value on each side of the effect size estimates and 95% 
confidence intervals, respectively. See Supplementary Table 1 for the number of samples at each age bin.
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Fig. 4 | Trio-resolved and haplotype-resolved association profiles. a, Effect size estimate for the conditional allelic association of the child, mother and 
father with child standardized BMI for each of the 46 variants at age at peak association. Here, child, mother and father genotypes are conditioned on each 
other (Methods). b, Association profile for birth weight loci known to present both maternal and fetal effects on birth weight. Effect size estimates of the 
association with child standardized BMI are represented for the child and the mother from birth to 2 years of age (fathers were included in the model, but 
not displayed for readability). Unadjusted P values represent the significance of the association with the number of effect alleles in the child, mother and 
father in a joint model, and thus differ from the P values of the GWAS. c, Association profiles with child standardized BMI from birth to 8 years of age for 
two variants upstream of KLF14 in a model combining the child, mother and father alleles into four haplotypes: non-transmitted allele from mother to child 
(MnT); allele transmitted from mother to child (MT); allele transmitted from father to child (FT); and non-transmitted allele from father to child (FnT). FnT 
is not represented here for readability; all results are available in Supplementary Table 4. Unadjusted P values represent the significance of the association 
with the number of effect alleles for each haplotype in a joint model. d, Regional plots for the unadjusted P values of association with the MT and FT 
haplotypes, top and bottom, respectively, in the haplotype-resolved model. The first and second locus, to the left and right, respectively, are annotated with 
a red diamond and SNPs coloured according to the LD R2. The coordinates of the nearest exon encoding KLF14 are annotated at the bottom. Thick and thin 
error bars and ribbons represent one s.e. value on each side of the effect size estimates and 95% confidence intervals, respectively. See Supplementary 
Table 1 for the number of samples at each time point and Methods for the statistical analysis.
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Fig. 5 | Polygenic risk score analyses. a,b, Mean standardized BMI of children in this study at each time point after stratification in PRS deciles using 
PRSs trained using summary statistics from meta-analyses (bottom), and relative risk of obesity for children at a given time point in the top and bottom 
PRS deciles in red and blue, respectively, compared to the entire cohort (top), where obesity is defined as belonging to the top five BMI percentiles. PRS 
training was performed using summary statistics for birth weight (a) from Warrington et al.29 and adult BMI (b) from Yengo et al.15. c,d, Zoomed views of 
the dashed rectangles in a and b showing the stratification by birth weight (c) and adult BMI (d) PRSs at birth and 8 years, respectively. The density of 
scores in this study is plotted with the different deciles coloured from left to right. Below, the relative risk of obesity for children in each decile relative to 
the entire cohort is plotted with the share of obese children in each decile annotated. Bottom, mean standardized BMI of children in each decile. All error 
bars represent 95% confidence intervals. See Supplementary Table 1 for the number of samples at each time point.
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Polygenic transition across infancy and childhood. We con-
structed polygenic risk scores (PRS) to assess the ability of PRSs of 
BMI and related traits to stratify BMI and obesity during infancy and 
early childhood. Strong age-dependent gradients were found with 
opposing patterns for birth weight and BMI-related traits (Fig. 5,  
Extended Data Fig. 6 and Supplementary Tables 8 and 9).

For the birth weight-based PRS, the difference in standardized 
BMI between the 1st and 10th decile was 0.7 at birth (Fig. 5), declin-
ing considerably at 6 weeks, and subsequently stabilizing. This 
residual and lasting association of the birth weight PRS supports an 
overlap between genetic variants influencing birth weight and BMI 
development in infancy and childhood. Furthermore, the top risk 
score decile captures an elevated and consistent share of obese chil-
dren, even until 7 to 8 years, where it performs similarly to scores 
trained on childhood BMI and obesity (Extended Data Fig. 6).

The PRS based on adult BMI displayed a shift from 3 to 8 years, 
where the difference in standardized BMI between the 1st and 10th 
decile rapidly grows (Fig. 5) and variance explained increases from 
0.4% to 5.3% (Extended Data Fig. 6). In the top risk decile, 13% 
of children were obese at age 8 years, corresponding to a 2.6 times 
higher risk compared with the median at this age, and a 7.4 times 
higher risk compared to the bottom risk decile. The PRSs based on 
previous childhood BMI and obesity studies display similar pat-
terns as those based on adult BMI studies, albeit with lower vari-
ance explained (Extended Data Fig. 6). These studies thus mainly 
capture the genetics of BMI after AR, where the adult architecture 
is already dominating. Results from both the BMI-adjusted and 
BMI-unadjusted T2D PRSs show an inverse correlation between 
BMI at birth and later T2D. However, while this effect quickly van-
ishes for the unadjusted T2D PRS, children in the top risk decile for 
BMI-adjusted T2D risk maintain lower BMI throughout infancy, 
possibly reflecting the key role of insulin metabolism during early 
growth45 (Extended Data Fig. 6 and Supplementary Table 8).

Age-stratified polygenic risk scores improve prediction of child-
hood body mass index. None of the PRS models above capture the 
BMI development during infancy and the first years of childhood. 
We evaluated the improvement in performance of PRS models 
when training on the time-resolved GWAS results generated in this 
study compared to models trained on adult BMI using a set of 1,096 
children in MoBa that were not included in the GWAS. Age-specific 
modelling vastly improved the variance explained by the PRS during 
infancy, especially around the AP at 6 months, where R2 increased 
from 1.5% using results from adult BMI to 6.4% using age-specific 
results (Extended Data Fig. 6 and Supplementary Table 8). We also 
tested the predictive ability of the 21 variants in the transient cluster, 
which peaked between 6 months and 1.5 years (P value < 1 × 10−5), 
and explained between 3.0% and 4.5% of the variance during this 
age span. Hence, the identified variants in the transient cluster alone 
explain a substantial proportion of the variance in BMI around the 
AP. Tracking the share of children in the different risk score strata 
at each time point yielded interweaved trajectories illustrative of the 
dramatic changes in the genetics of BMI (Extended Data Fig. 6).

Discussion
The association of common genetic variation with BMI changes 
rapidly during infancy and early childhood, which are stages of life 
characterized by rapid development and drastic changes in the envi-
ronment, body composition and metabolism. From the 46 inde-
pendent loci that we associated with childhood BMI, 29 were not 
associated with birth weight or adult BMI in large meta-analyses. 
We proposed to group the genetic association with early BMI into 
four main clusters that align well with the phases of early growth 
(Fig. 1): the birth cluster, characterized by loci mainly acting on 
fetal growth; the transient and early rise clusters, which affect BMI 
development during the key transitions around AP and rebound; 

and finally, the late rise cluster of loci, which come into play later 
in childhood and have persistent influence on BMI into adult life. 
It is important to note that the assignment of variants to clusters 
can be misled by uncertainty in effect size estimates, especially at 
later ages, and uneven distribution of time points, and depends on 
predefined reference curves. Although the ALSPAC trajectories and 
summary statistics from adult BMI studies are consistent with our 
results, further research with larger sample sizes is needed to refine 
the temporal profiles of these loci and their clustering.

Most of the variants that we discovered show age-specific tran-
sient effects and thus would not be identified from GWAS in other 
age groups. Conversely, early rising loci display gradually stronger 
effects after birth lasting into the prepubertal age. These loci may 
be particularly important for processes preceding puberty onset, 
which is supported by the LD score regression profiles that show 
gradually increasing genetic correlation between BMI at 3 to 8 years 
of age and early puberty, higher stature at age 10–12 years and a 
shorter relative length increase after age 12 years. The age-specific 
association patterns demonstrate a major change in the underlying 
genetic architecture of childhood BMI before and after AR, where 
a shift in association trajectories, genetic correlations, PRS predic-
tion power and heritability occurs. This is further underlined by 
the large overlap between variants identified in adult BMI and late 
childhood, but lower overlap with earlier childhood.

An important step in the search for more effective intervention 
and treatment strategies for childhood and adolescence obesity is 
to improve our understanding of the genetic and molecular mecha-
nisms influencing BMI development before childhood obesity 
develops, typically at 5 years of age, to select predisposed children 
for targeted intervention. Our results point to the substantial inher-
ited variability influencing key genes in the hypothalamic signal-
ling pathway previously known for their role in Mendelian morbid 
obesity. In addition to replicating the association with variants in 
LEP/LEPR19,20, we identify two novel variants in LEPR and variants 
near PCSK1, ADCY3 and MC4R, all known monogenic obesity 
genes and central to the hypothalamic signalling pathway; all show 
age-dependent influences during early childhood. Thus, our find-
ings are highly suggestive of energy intake and expenditure being 
central to controlling BMI during early childhood, especially before 
5 years of age. Notably, many of these genes are already targets for 
treatment in Mendelian disease, such as leptin-replacement treat-
ment for LEP deficiency and MC4R agonists for LEPR, PCSK1 and 
POMC deficiency46–48. As more genes implicated in monogenic obe-
sity are found to harbour common variants associated with BMI, 
the notion that monogenic and polygenic obesity share underlying 
aetiologies is strengthened.

The identification of three novel signals within GLP1R offers 
another important link to putative treatment opportunities. The 
bidirectional gut–brain axis connecting the enteric with the central 
nervous system plays a vital role in informing the brain of periph-
eral energy status. However, relatively few genetic variants associ-
ated with genes that have direct or indirect roles in gastrointestinal 
functions have been associated with childhood obesity. First, the 
discovery of three novel independent associations in GLP1R not 
picked up in the much bigger meta-analyses on adult BMI is advo-
cating for distinctly different underlying biology driving early BMI 
development. Second, it iterates on the importance of hypothalamic 
signalling and further establishes the importance of common varia-
tion in genes related to the gut–brain axis in development of early 
childhood BMI. Finally, increased understanding of GLP-1 signal-
ling in early childhood BMI development is particularly important 
as GLP1R is a pharmaceutical target for treating adult obesity49 and 
recently showed promising results for treating obesity in adoles-
cence50. A study of patients treated with the GLP1R agonist liraglu-
tide found alterations in brain activity related to highly desirable 
food cues and reduced activity in areas of the brain involved in 
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the reward system51. Mice injected with liraglutide show increased 
energy expenditure through stimulation of brown adipocyte ther-
mogenesis acting through hypothalamic processes52. Animal stud-
ies have shown that GLP1Rs located in the brain mediate the effect 
of liraglutide on weight loss. A previous study found that knocking 
down GLP1R in the brain eliminated the effect of liraglutide, while 
knocking down the same receptor in the peripheral nervous system 
did not reduce its efficacy significantly53. GLP1R expression in adi-
pose tissue has also been linked to increased insulin sensitivity54.

Combined, these results point towards a key role of the central 
melanocortin system for appetite and energy expenditure early in 
life, and in particular highlights the POMC system as a putative 
drug target. This shows that well-powered GWAS of BMI per-
formed in young children can identify novel genes, proteins and 
pathways not found in adult GWAS, with putative potential for obe-
sity treatment. However, translating GWAS findings into function 
is challenging and, for most of the discovered loci, more research 
is needed to reveal the precise molecular and physiological mecha-
nisms involved.

Child–mother–father trio analyses revealed that the association 
for two independent loci near KLF14 is driven by the maternally 
transmitted allele only, suggesting that the paternal allele is silenced. 
Maternal imprinting for variants in KLF14 has previously been iden-
tified for T2D, and one of our variants tags the same signal, while 
the other is a novel secondary imprinting effect acting on KLF14 in 
early childhood. Additionally, our PRS analysis using a T2D reference 
study finds persistently low BMI during childhood for children in the 
highest decile of BMI-adjusted T2D PRSs, and it is tempting to ascribe 
these late effects on childhood BMI to mechanisms acting through 
insulin and glucose metabolism given the numerous studies associat-
ing KLF14 with T2D. However, alleles in high LD with the infant BMI 
and T2D risk-increasing alleles were recently associated with lower 
plasma leptin levels adjusted for BMI44, offering yet another putative 
link between leptin regulation and weight gain in infancy.

Polygenic risk prediction provides opportunities to estimate an 
individual-level genetic liability and may potentially be used for 
early identification of children with considerable risk for developing 
obesity. Here, we show striking differences in BMI between children 
in the top and bottom deciles of an adult BMI-based PRS concur-
rent with timing of the AR. Notably, the effect estimates in MoBa 
are almost identical to what was previously described for British 
children from ALSPAC12, suggesting that this score is transferable 
between Scandinavian and British children. We also show that the 
PRS can identify children at considerably higher risk of being obese 
already from 5 years of age. As much as 13% of children in the top 
decile could be defined as obese at age 8 years, corresponding to a 
sevenfold higher risk compared to the bottom risk decile (Fig. 5). 
The shift in genetic architecture before age 5 years renders PRSs 
based on adult BMI inferior to age-resolved scores during infancy. 
The testing in our independent sample demonstrates that BMI in 
the earlier years of life is shaped by a complex interplay and transi-
tions from both age-restricted and more long-term genetic influ-
ences that have to be considered when evaluating a child’s growth 
pattern and the potential for targeted interventions. Although both 
sensitivity and specificity of current PRSs for obesity still are low24, 
PRS stratification may help identify selected groups of children that 
benefit more from early intervention or tailored treatment.

Our study sample consists of a single cohort of northern 
European descent, and further research is needed to evaluate the 
generalization of the results to other populations. However, the 
larger size of the current MoBa release, the availability of paren-
tal data and the homogeneous phenotyping allowed us to perform 
much more detailed time-resolved analyses than typically pos-
sible in a meta-analysis involving studies performed under differ-
ent protocols and data collection time points. The age-dependent 
association patterns identified here illustrate the importance of 

early age sampling, and the need for unifying data collection and 
measurements across cohorts to balance the putative benefit from 
increased sample size without introducing considerable variance in 
the phenotyping.

In conclusion, our results provide a fine-grained understanding 
of the changing genetic landscape regulating BMI from birth to 8 
years. The identified loci represent clusters of association trajec-
tories that reflect various phases of growth and highlight a funda-
mental role of pathways involved in appetite regulation and energy 
metabolism in both normal growth and rare syndromic obesity. 
These results demonstrate a strong genetic drive ensuring that chil-
dren gather the energy necessary to sustain healthy growth.

Methods
Ethics. Ethical approval for the study was obtained from the ALSPAC Ethics and 
Law Committee and the Local Research Ethics Committees. Informed consent 
for the use of data collected via questionnaires and clinics was obtained from 
study participants following the recommendations of the ALSPAC Ethics and Law 
Committee. Consent for biological samples was collected in accordance with the 
Human Tissue Act (2004). The administrative board of MoBa led by the Norwegian 
Institute of Public Health approved the study protocol. The establishment of 
MoBa and initial data collection was based on a licence from the Norwegian Data 
Protection Agency and the study was approval by The Regional Committee for 
Medical Research Ethics (no. 2012/67). The MoBa cohort is currently regulated by 
the Norwegian Health Registry Act.

Study population. MoBa is an open-ended cohort study that recruited pregnant 
women in Norway from 1999 to 2008. Approximately 114,500 children, 95,200 
mothers and 75,000 fathers were enrolled in the study from 50 hospitals across 
Norway27. Anthropometric measurements of the children were carried out at 
hospitals at birth and during routine visits in the primary health care system by 
trained nurses at 6 weeks, at 3, 6 and 8 months, and at 1, 1.5, 2, 3, 5, 7 and 8 years of 
age. Parents later transcribed these measurements to questionnaires. In 2012, study 
personnel from SELECTionPREDISPOSED (an ERC AdG-supported University 
of Bergen project) and Better Health by Harvesting Biobanks (HARVEST) 
randomly selected 11,490 umbilical cord blood DNA samples from the biobank 
of this study for family triad genotyping, excluding samples matching any of the 
following criteria: (1) stillborn, (2) deceased, (3) twins, (4) non-existent data at the 
Norwegian Medical Birth Registry, (5) missing anthropometric measurements at 
birth in Medical Birth Registry, (6) pregnancies where the mother did not answer 
the first questionnaire (as a proxy for higher dropout rate) and (7) missing parental 
DNA samples. In 2016, HARVEST researchers randomly selected a second set of 
8,900 triads using the same criteria. The same year NORMENT personnel selected 
5,910 triads with the same selection criteria as those used for HARVEST, and 
extended this with 3,209 triads in 2018. Additionally, a study from 2014 genotyped 
1,062 attention deficit hyperactivity disorder (ADHD) cases among the children, 
and, in 2015, a study genotyped 5,834 randomly selected parents.

Genotyping. Genotyping of the samples was performed in seven different 
batches on different Illumina platforms over 4 years. Genotyping in the 
SELECTionPREDISPOSED and HARVEST studies was performed using 
Illumina HumanCoreExome-12 (v1.1) and HumanCoreExome-24 (v1.0) 
arrays for 6,938 and 4,552 triads, respectively, at the Genomics Core Facility 
in the Norwegian University of Science and Technology, Trondheim, Norway. 
The second wave of genotyping in HARVEST was genotyped using Illumina’s 
Global Screening Array (v1.0) for all 8,900 triads at the Erasmus University 
Medical Center in Rotterdam, the Netherlands. NORMENT genotyped 5,910 
triads using InfiniumOmniExpress-24 (v1.2) in 2016 and 3,209 samples 
using GSA24 (v1.0) in 2018. The 1,062 ADHD cases were genotyped using 
InfiniumOmniExpress-24 (v1.2) in 2014 and the 5,834 randomly selected controls 
using HumanOmniExpress-24 (v1.0). All genotyping was conducted at deCODE 
genetics, Reykjavik, Iceland. The Genome Reference Consortium Human Build 37 
(GRCh37) reference genome was used for all annotations.

Genotypes were called in Illumina GenomeStudio (v2011.1) for the 11,490 
triads part of HARVEST and v2.0.3 for the remaining batches. Cluster positions 
were identified from samples with a call rate ≥ 0.98 and a GenCall score ≥ 0.15. We 
excluded variants with low call rates, signal intensity, quality scores and deviation 
from Hardy–Weinberg equilibrium based on the following quality-control (QC) 
parameters: call rate < 98%, cluster separation < 0.4, 10% GC score < 0.3, AA T 
Dev > 0.025 and Hardy–Weinberg equilibrium P value < 1 × 10−6. Samples were 
excluded based on call rate < 98% and heterozygosity excess > 4 s.d. values. Study 
participants with non-Norwegian ancestry were excluded after merging with 
ancestry reference samples from the HapMap project (v3).

Pre-phasing and imputation. Before imputation, insertions and deletions were 
removed to make the dataset congruent with the Haplotype Reference Consortium 
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(HRC; v1.1) imputation panel using the HRC Imputation preparation tool by 
Will Rayner (v4.2.5). Allele, marker position and strand orientation were updated 
to match the reference panel. Pre-phasing was conducted locally using Shapeit 
(v2.790)55. Imputation was performed at the Sanger Imputation Server with 
positional Burrows–Wheeler transform56 and HRC (v1.1) as the reference panel.

Phenotypes. Length/height and weight values were extracted from hospital 
records through the Norwegian Medical Birth Registry for measurements at birth 
and from the study questionnaires for the remaining time points. In addition, 
pregnancy duration in days calculated from ultrasound due date was obtained 
from the Norwegian Medical Birth Registry. Length and weight values were 
inspected at each age and those provided in centimetre or gram instead of metre 
and kilogram, respectively, were converted. Extreme outliers, typically an error 
in handwritten text parsing or a consequence of incorrect units, were excluded. 
The value x was considered as an extreme outlier if x > m + 2 × (perc99 − m) or 
x < m −2 × (m − perc1), where m represents the median within the age group, and 
perc1 and perc99 represent the 1st and 99th percentiles, respectively.

Outlier detection and missing value imputation. For all children in MoBa 
(n > 100,000), length and weight curves were inspected for outlying values, missing 
values were imputed, and artefacts causing the length of children to decrease 
were corrected19. Length and weight values presenting an extreme peak or an 
extreme gap were removed. Missing values preceded and followed by at least two 
measurement points were imputed through interpolation on the growth curve. 
Length curves were adjusted to prevent peaks to cause length decrease19. These 
steps were conducted iteratively until no data point was changed (Extended Data 
Fig. 7). Finally, for all children and all time points presenting both length and 
weight values, the BMI was computed.

Sample selection. From the total set of growth curves, only the genotyped children 
passing genotype QC were retained. In addition, the following pregnancies were 
excluded: (1) pregnancies strictly shorter than 37 full gestational weeks (259 d); (2) 
plural pregnancies; (3) ADHD excess cases; (4) outliers in the principal-component 
analysis (PCA) of the genotypes. The set of ADHD excess cases were defined as the 
additional cases included by the ADHD case–control study. Outliers in the PCA 
represented 6% of the cohort, and were excluded to reduce the risk of systematic 
bias due to population stratification57. The resulting set of 28,681 children was used 
in genetic association and is referred to in the following as the full set of children. 
From this, we built a set of child–mother–father trios by selecting children who 
had both parents genotyped, with parents passing genotype QC and belonging to 
the central cluster in the PCA of the genotypes. If the members of two different 
trios were related according to an identity-by-descent analysis (PI_HAT > 0.1), 
one trio was randomly excluded. The resulting set of 23,538 trios is referred to 
in the following as the set of unrelated trios. Allele frequencies and LD scores are 
estimated based on the parents in the set of unrelated trios.

Phenotype standardization. For the full set of children, at each time point, 
the BMI was standardized using the generalized additive model for location, 
scale and shape (GAMLSS) v5.1-7 (https://www.gamlss.com/) in R v3.6.1 
(2019-07-05)—‘Action of the Toes’. Two GAMLSS models based on a log-normal 
distribution were fitted separately for boys and girls, using pregnancy duration as 
a covariate, as detailed in Supplementary Table 10. Note that the models of early 
BMI include a nonlinear dependency on pregnancy duration, but the nonlinear 
terms had to be removed after 6 months to ensure the convergence of GAMLSS. 
GAMLSS models were fitted solely on children from the set of unrelated trios. The 
models obtained were used to compute standardized BMI values for the full set of 
children using the ‘centiles.pred’ function of GAMLSS (Supplementary Table 10). 
All effect sizes are expressed relative to the standardized phenotypes. A child was 
considered obese if the standardized BMI was strictly higher than qnorm (0.95), 
where qnorm represents the quantile function of the standard normal distribution.

Genetic association. The association between the genotypes and the standardized 
phenotypes using linear mixed models was conducted using BOLT-LMM (v2.3.4)58 
in the full set of children using genotyping batch, sex, pregnancy duration and 
ten principal components as covariates. LD scores were taken from samples of 
European ancestry in the 1000 Genomes Project59, and the genetic map files 
embedded with BOLT-LMM. The genetic relationship matrix was calculated 
using a set of high-quality markers having minor allele frequency > 0.05 and 
INFO score > 0.98. A genetic variant was deemed genome-wide significant at 
a P value < 5 × 10−8 at any given time point. At all loci reaching genome-wide 
significance, approximate COJO multiple-SNP analyses were conducted using 
COJO in GCTA (1.93.2b)28. Throughout all analyses, the age at peak association 
refers to the age of lowest P value in the association with BMI, and the effect allele 
refers to the BMI-increasing allele at age at peak association.

Effect size estimates for the top hits in ALSPAC. Age, weight and height of 
children were obtained from the ALSPAC cohort1,30, which corresponds to 15,454 
pregnancies, resulting in 15,589 fetuses. Of these, 14,901 were alive at 1 year of age. 
We jointly used both self-reported values and measurements from the Children 

in Focus group as obtained from the ALSPAC cohort. Data are available on the 
ALSPAC website through a fully searchable data dictionary and variable search tool 
(‘Data availability’).

Only children listed in the set of unrelated children as provided by the cohort 
were used. BMI values were computed unless already provided. Values were binned 
at birth, around 4 and 8 months, around 1, 1.5, 2 and 2.5 years, and around every 
year from 3 to 18 years of age. When multiple values for the same child were 
present in the same bin, the one closest to its individual BMI curve was retained. 
BMI values were standardized using GAMLSS as done for MoBa. Genotypes 
were extracted using PLINK 1.9 and a linear association between genotypes and 
standardized BMI was conducted in R.

Obesity gene enrichment analysis. The gene enrichment analysis around the 
46 top hits was conducted using the union of two panels of genes implicated in 
monogenic and severe early-onset obesity: Blueprint Genetics Monogenic Obesity 
Panel (test code KI1701; https://blueprintgenetics.com/tests/panels/endocrinology/
monogenic-obesity-panel/), consisting of 36 genes, and Genomics England 
severe early-onset obesity panel v2.2, consisting of 32 genes (https://panelapp.
genomicsengland.co.uk/panels/130/). The union of the two resulted in 42 genes 
used in analysis. A list containing gene locations for hg19 was obtained from 
PLINK 1.9 resources (https://www.cog-genomics.org/plink/1.9/resources/), which 
contained 25,303 unique genes used in the analysis. A 500-kb window was used to 
identify genes in the vicinity of the top hits. The significance for the enrichment 
of monogenic genes compared to random sampling was estimated using the 
distribution function of the hypergeometric distribution via the function ‘phyper’ 
from the R package stats.

Comparison with adult body mass index in MoBa. Pre-pregnancy BMI values 
were computed using self-reported height and weight for the parents who were 
genotyped and passed QC, excluding outliers in the PCA of the genotypes (27,088 
mothers and 26,239 fathers), yielding 26,062 and 22,719 values for mothers and 
fathers, respectively. As detailed in Supplementary Table 10, BMI values were 
standardized using GAMLSS for mothers and fathers separately, using their 
birth year as the covariate, as a proxy for age. Like for children, GAMLSS models 
were fitted solely on parents from the set of unrelated trios and used to compute 
standardized values for all parents, including related parents.

The association between parent BMI and genotypes was computed for mothers 
and fathers separately, using BOLT-LMM (v2.3.4)58 as done for the children. 
The covariates used were the genotyping batch, birth year and ten principal 
components.

Clustering of association profiles. For each of the 46 independent genome-wide 
significant variants, alleles were aligned so that the association with standardized 
BMI was positive at the age of peak association. Effect sizes for all time points 
were then combined into an association profile for this variant, that is, a vector 
β = (βbirth, β6w, ..., β8y)). Reference profiles showing effect sizes over time 
corresponding to an association at birth waning afterwards and an increasing 
association after 1 year of age towards adulthood were built using equations (1) and 
(2), respectively.

x1(age) = 10−3 age
365.25 (1)

x2(age) = 0 if age < 365.25,
(

age − 365.25
7 × 365.25

)2
else (2)

Where x1 and x2 represent the reference profiles and ‘age’ is the age at a given 
time point in days. These reference profiles are predefined constructs and their 
parameterization can influence the clustering. They were not tuned towards 
specific outcomes to avoid overfitting. The association profiles of each variant were 
then projected onto these reference profiles, by fitting a linear model according to 
equation (3):

β ∼ x1 + x2 + 1 (3)

The resulting projection is shown in Fig. 1b. The profiles of equations (1) and 
(2) correspond to the curves on the West and South cardinal directions of Fig. 1b, 
while the profiles in all other cardinal and intercardinal directions correspond to 
linear combinations of these two, yielding eight reference profiles: early fall and late 
rise (SE), early fall (E), early and late fall (NE), late fall (N), early rise and late fall 
(NW), early rise (W), early rise and late rise (SW) and late rise (S).

Each variant was plotted on Fig. 1b using the sum of the absolute values of the 
effect size over time as the radial coordinate, hence avoiding dependency on the 
reference profiles for this coordinate, and the relative association with x1 and x2 to 
define the angular coordinate, as described in equations (4) and (5), respectively.

ρ = Σ|β| (4)

θ = −atan2(βx2 , βx1 ) + θ0 (5)
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Where ρ represents the radial coordinate, θ the angular coordinate, βx1 and βx2 
the association between the genetic association profile and the reference profiles x1 
and x2, respectively, and θ0 a constant.

Each association profile was plotted after normalization to the association level 
at age at peak in Fig. 1c using the angular coordinate θ as baseline on the ordinate.

A cardinal or intercardinal cluster was defined for each of the eight reference 
profiles corresponding to the cardinal and intercardinal directions in Fig. 1b. 
Every cardinal and intercardinal cluster was assigned a first element chosen to 
be the variant with the angular coordinate θ closest to the direction (that is, most 
correlated to that profile). The other variants were then assigned to a cluster 
based on their angular nearest neighbour, yielding the clustering displayed by 
the dendrogram of Fig. 1d. Finally, as illustrated in Fig. 1e, the cardinal and 
intercardinal clusters were grouped into four main clusters: (birth) SE + E + NE; 
(transient) N + NW; (early rise) W; and (late rise) SW + S.

Mapping to pathways. The lead SNPs of the 46 independent loci were submitted 
to the Ensembl Variant Effect Predictor60. All proteins coded by genes reported 
with a consequence other than downstream_gene_variant, upstream_gene_variant 
or intergenic_variant were retained as potentially affected by a given variant. If 
no such gene was found, the protein coded by the closest gene within 500 kb was 
retained. Proteins were matched to Reactome61 using PathwayMatcher62. Then, for 
each of the four main clusters, we built the smallest set of top-level pathways that 
explained the protein set returned by the Variant Effect Predictor analysis, and 
counted the number of variants in this cluster affecting a protein in one of these 
top-level pathways (Fig. 1f). Results for each SNP are reported in Supplementary 
Table 3.

Mapping to other traits. For each SNP, other associated traits were extracted using 
PhenoScanner63,64. PhenoScanner was queried using ‘EUR’ and an R2 threshold 
of 0.8 for proxies and 5 × 10−8 as the P-value threshold. Synonymous terms were 
grouped, and, for each of the four main clusters, the number of variants mapping 
to a given trait relative to the number of variants in the cluster was plotted in Fig. 
1g. Results for each SNP are reported in Supplementary Table 3.

Comparison with birth weight and adult body mass index. Summary statistics 
on birth weight and adult BMI were obtained from Warrington et al.29 and Yengo 
et al.15, respectively. Variants were matched by rsID. For the variants with no 
match, proxies were sought using LDproxy (https://ldlink.nci.nih.gov/) using a 
window of 500 kb, CEU as the reference population and an R2 threshold of 0.2, and 
alleles were aligned. From the 46 top hits, variants were considered novel if there 
were no nearby proxy SNPs in high LD (R2 > 0.6) with the lead SNP in data from 
Warrington et al.29 and Yengo et al.15 that had a P value lower than 5 × 10−8. For 
comparisons, for each of the 46 top hits, the variant in statistics from Warrington 
et al.29 and Yengo et al.15 with the lowest P value with an LD R2 value higher or 
equal to 0.2 was extracted. Summary statistics for all variants in the three datasets 
are available in Supplementary Table 11.

Subsequently, for all variants associated with own birth weight in the statistics 
from Warrington et al.29, and all variants associated with adult BMI in data from 
Yengo et al.15, the association profile in MoBa was extracted and the angular 
coordinate of Fig. 1b was computed by projecting onto the reference profiles as 
before. The angular density of each study was subsequently computed using sliding 
windows over θ, normalized to the number of variants in each study, and plotted 
in Fig. 1h.

Child–mother–father trio and haplotype analysis. At all time points, for all 46 
independent genome-wide significant variants, the association with the children’s 
genome was conditioned on the genomes of the parents in the set of unrelated trios 
using the linear model described in equation (6).

BMI ∼ child + mother + father + 1 (6)

Where ‘BMI’ refers to the standardized BMI of the child at a given time point, 
and ‘child’, ‘mother’ and ‘father’ refer to the number of tested alleles (hard-call 
genotypes) for this variant in the child, mother, and father genomes, respectively.

Taking advantage of the phasing of the children’s genotypes, we could infer the 
parent of origin of the genotyped alleles as done by Chen et al.65. This results in an 
alternative model that allows studying the association per haplotype in the set of 
unrelated trios, as detailed in equation (7).

BMI ∼ MnT + MT + FnT + FT + 1 (7)

Where MnT and MT refer to the number of tested alleles non-transmitted and 
transmitted by the mother to the child, respectively. Similarly, FnT and FT refer to 
the number of tested alleles non-transmitted and transmitted by the father to the 
child, respectively.

For a given variant, the share of Mendelian errors in the set of unrelated trios 
was estimated using trios presenting a homozygous parent. Then, a Mendelian 
error results in a value of −1 or +2 in the non-transmitted allele count. The share 
of Mendelian error was estimated by comparing the number of such erroneous 
genotypes to the number of trios with a homozygous parent expected from the 

tested allele frequency. When the estimated share of Mendelian errors was over 
50%, the alleles of the children were swapped.

For the chromosome X, no filtering was done based on ploidy; when only one 
chromosome was found the allele was assumed to be inherited from the mother. 
Note that the chromosome X was not phased, yielding a high share of Mendelian 
errors, approximately 50%, indicative of a random assignment of children alleles. 
Haplotype analysis was therefore not possible for the variant on chromosome X, 
while trio analysis is unaffected by this.

For both models, the same covariates were used as for the genetic association 
analysis using BOLT-LMM, that is, genotyping batch, sex, gestational age and 
ten principal components, and both phenotypes and genotypes were adjusted for 
covariates in the same way as BOLT-LMM does. Haplotype and trio analyses were 
conducted using TrioGen v0.5.0 (https://github.com/mvaudel/TrioGen/) in the 
OpenJDK Runtime Environment (Zulu 8.20.0.5-linux64; build 1.8.0_121-b15). 
Summary statistics for all variants are available in Supplementary Table 7.

LD score regression. LD score regression was performed with LD Hub v1.9.0 
using LDSC v1.0.027 with all markers remaining after filtering on the provided 
SNP list as recommended by the LD Hub authors. A total of 1,215,001 markers 
remained after filtering. All available phenotypes were selected for correlation 
analyses. Results for all variables along with heritability and QC reports are 
available in Supplementary Table 4.

Polygenic risk scores. PRSs were calculated using PRSice-2 v2.3.0 (https://www.
prsice.info/). For scores based on study results from previous meta-analyses, 
the results were obtained from EGG (http://egg-consortium.org/) for birth 
weight, childhood BMI and childhood obesity, GIANT for adult BMI (https://
portals.broadinstitute.org/collaboration/giant/) and DIAGRAM (https://
diagram-consortium.org/) for T2D. PRSs were calculated separately for all time 
points for each phenotype using ten principal components, sex, gestational age 
and genotyping batch as covariates. Samples without a valid BMI measurement for 
a specific age were excluded from the analysis at that age, but would be included 
in analyses of other ages should BMI measurement be available. Among the 
samples reaching analysis at any age; none had missing genotype data because 
only markers available in HRC 1.1 were used in the analyses and none of the 
samples had missing covariates. The target dataset provided to PRSice included all 
markers available after imputation as hard-called genotypes, but were filtered to 
only include variants present in the respective reference data used in the respective 
analysis (supplying beta weights for each variant). Variants were excluded by 
LD pruning using the target dataset and default settings for PRSice (250-kb 
clump window, R2 threshold of 0.1, no P-value threshold). In the resulting set of 
samples and markers, multiple PRS models were generated and fitted by gradually 
incrementing the inclusion P value by 5 × 10−5. Finally, the assessed PRS models 
were ranked by P value of model fit. The PRS model with the best fit at each age 
was used in downstream stratification analyses. From the full set of children, 
one in each pair of samples with PI_HAT > 0.1 was removed at random, leaving 
25,113 samples for the PRS analyses. Time-resolved scores used age-specific 
summary results from the primary analyses as the base with the independent set of 
1,062 samples from MoBa as the target. Here, ten principal components, sex and 
gestational age were used as covariates. Defaults were used for all other parameters. 
A PRS report as formalized by Wand et al.66 is available in Supplementary Table 12.

Figures. All figures were generated in R v3.6.1 (2019-07-05)–Action of the Toes 
(https://www.r-project.org/). In addition to the base packages, the following 
packages were used: tidyr (v1.1.0), janitor (v2.0.1), conflicted (v1.0.4), glue 
(v1.4.0), stringr (v1.4.0), dplyr (v1.0.0), scico (v1.1.0), RColorBrewer (v1.1-2), 
ggplot2 (v3.3.2), ggrepel (v0.8.2), grid (v3.6.1), gtable (v0.2.0), patchwork (v1.1.1), 
PhenoScanner (v1.0) and ggfx (v0.0.0.900).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The full GWAS summary statistics for all time points are available at https://www.
fhi.no/en/studies/moba/for-forskere-artikler/gwas-data-from-moba/. Access 
to genotypes and phenotypes from MoBa is subject to controlled access by the 
Norwegian Institute of Public Health in accordance with national and international 
regulations. Conditions of access including contact details for requests can be 
found at the Norwegian Institute of Public Health website (https://www.fhi.no/en/
studies/moba/).
HRC or 1000G Imputation preparation and checking: https://www.well.ox.ac.
uk/~wrayner/tools/.
Sanger imputation service: https://imputation.sanger.ac.uk/.
LD score repository: https://alkesgroup.broadinstitute.org/LDSCORE/.
Genotype-Tissue Expression: https://www.gtexportal.org/.
Birth weight reference data29: http://egg-consortium.org/BW5/Fetal_BW_
European_meta.NG2019.txt.gz.
Adult BMI reference data15: http://portals.broadinstitute.org/collaboration/giant/
images/c/c8/Meta-analysis_Locke_et_al%2BUKBiobank_2018_UPDATED.txt.gz.
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T2D67: https://www.diagram-consortium.org/downloads.html.
• T2D GWAS meta-analysis–unadjusted for BMI67.
• T2D GWAS meta-analysis–adjusted for BMI67.
Childhood obesity18: http://egg-consortium.org/Childhood_Obesity_2019/
CHILDHOOD_OBESITY.TRANS_ANCESTRAL.RESULTS.txt.gz.
Childhood BMI16: http://egg-consortium.org/Childhood_BMI/EGG_BMI_
HapMap_DISCOVERY.txt.gz.
ALSPAC data dictionary and variable search tool: http://www.bristol.ac.uk/alspac/
researchers/our-data/.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Overlay with association profiles obtained from ALSPAC. Effect size estimates for all 46 hits obtained in the MoBa and ALSPAC 
cohorts. The quadrant plots to the left display the shape of the effect size estimate over time as obtained in Fig. 1B, for both cohorts, between birth and 
eight years of age. The effect size estimates are plotted at each age to the right using line and ribbons for MoBa and point and error bars for ALSPAC. 
Note that to maintain readability of earlier time points, the scale of the x axis is not linear. Thick and thin error bars/ribbons represent one standard error 
estimate on each side of the effect size estimates and 95% confidence intervals, respectively. See Supplementary Table 1 for the number of samples at 
each time point.
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Extended Data Fig. 2 | SNP-based heritability. H2 estimates from LD score regression for BMI plotted at each time point (black) along with locally 
estimated scatterplot smoothing (LOESS) local regression (in blue). Error bars represent ±SEM. See Supplementary Table 1 for the number of samples at 
each time point.
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Extended Data Fig. 3 | LD-score regression. Genetic correlation estimate, rg, of selected traits with early growth BMI at birth, 6 weeks, 3, 6, 8 months, 
and 1, 1.5, 2, 3, 5, 7, and 8 years of age. Ribbons represent one standard error estimate on each side of the rg estimate. See methods for details and 
Supplementary Table 7 for correlation with other traits. See Supplementary Table 1 for the number of samples at each time point.
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Extended Data Fig. 4 | Comparison with previous studies on birth weight and adult BMI for the variants near monogenic obesity genes. Heatmap of the 
effect size for the none top hits near monogenic diabetes genes (see Supplementary Table 2) from birth to adulthood obtained similarly as for Fig. 2A. Note 
that, in contrast to Fig. 2A, the name of the nearest monogenic obesity gene is used on the y axis, and not the locus name. See Supplementary Table 1 for 
the number of samples at each time point.
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Extended Data Fig. 5 | Loci with multiple independent associations signals. Effect size estimates with child BMI from birth to eight years of age for the 
lead SNPs of the signals near (A) LEPR, (B) GLP1R, and (C) PCSK1. Dark and light Ribbons represent one standard error estimate on each side of the effect 
size estimate and 95% confidence intervals, respectively. For each SNP, regional plots are displayed at the age at peak association, highlighting the lead 
SNPs with red diamonds and SNPs coloured according to the LD R2, with the exons of the gene according to Ensembl at the bottom and recombination 
rates in blue. See Supplementary Table 1 for the number of samples at each time point, the methods for the statistical analysis.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Polygenic risk score (PRS) analyses. A-D) Mean standardized BMI of children in this study at each time point after stratification 
in PRS deciles using PRS trained using summary statistics from meta-analyses (bottom), and share of obese children at a given time point in the top PRS 
decile (top), where obesity is defined as belonging to the top 5 BMI percentile. PRS training was performed using summary statistics for (A) birth weight 
from Warrington et al29. (B) childhood obesity from Bradfield et al18. (C) childhood BMI from Felix et al16. (D) adult BMI from Yengo et al15. (E) Mean 
standardized BMI for the children in this study falling in the top and bottom deciles of type 2 Diabetes (T2D) risk scores at each time point. PRS for T2D 
and T2D adjusted for BMI, represented in dashed and solid lines, respectively, were trained using summary statistics from Mahajan et al67. (F) R2 estimated 
at each time point when training the PRS for Birth weight, childhood obesity, childhood BMI, adult BMI, and T2D in Fig. 5A-E. (G) Mean standardized BMI 
of children in MoBa that were kept out of the discovery sample falling in the top and bottom quintiles of time-resolved early growth PRSs trained using 
summary statistics of this study at each time point (solid lines) and of the adult BMI PRS of Fig. 1D (dashed line) (Bottom), along with the respective R2 
estimated when training the PRSs (Top). (H) Mean standardized BMI of children in MoBa that were kept out of the discovery sample falling in the bottom, 
intermediate, and top quintiles of time-resolved early growth PRSs trained using summary statistics of this study at each time point, in blue, black, and 
red, respectively. At each time point, rectangles represent one standard error estimate on each side of the mean estimate. Transitions between time 
points represent the share of children moving from one quintile category to the other. For each time point, mean BMI estimates for these children after 
stratification in quintiles are plotted for time-resolved early growth PRSs against the adult BMI PRS of Fig. 1D in inserts. All error bars/ribbons represent 
one standard error estimate on each side of the mean estimate. See Supplementary Table 1 for the number of samples at each time point.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Growth curves processing. Length and Weight curves were inspected for outliers and missing values were imputed. This process 
was repeated until no value was changed. Then length values were inspected for negative growth and adjusted. The entire process was repeated until no 
value was changed.
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