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A population-wide gene-environment interaction study on how
genes, schools, and residential areas shape achievement
Rosa Cheesman 1✉, Nicolai T. Borgen 2, Torkild H. Lyngstad 3, Espen M. Eilertsen1, Ziada Ayorech1, Fartein A. Torvik1,4,
Ole A. Andreassen 5, Henrik D. Zachrisson2 and Eivind Ystrom 1,6

A child’s environment is thought to be composed of different levels that interact with their individual genetic propensities.
However, studies have not tested this theory comprehensively across multiple environmental levels. Here, we quantify the
contributions of child, parent, school, neighbourhood, district, and municipality factors to achievement, and investigate interactions
between polygenic indices for educational attainment (EA-PGI) and environmental levels. We link population-wide administrative
data on children’s standardised test results, schools and residential identifiers to the Norwegian Mother, Father, and Child Cohort
Study (MoBa), which includes >23,000 genotyped parent-child trios. We test for gene-environment interactions using multilevel
models with interactions between EA-PGI and random effects for school and residential environments (thus remaining agnostic to
specific features of environments). We use parent EA-PGI to control for gene-environment correlation. We found an interaction
between students’ EA-PGI and schools suggesting compensation: higher-performing schools can raise overall achievement without
leaving children with lower EA-PGI behind. Differences between schools matter more for students with lower EA-PGI, explaining 4
versus 2% of the variance in achievement for students 2 SD below versus 2 SD above the mean EA-PGI. Neighbourhood, district,
and municipality variation contribute little to achievement (<2% of the variance collectively), and do not interact with children’s
individual EA-PGI. Policy to reduce social inequality in achievement in Norway should focus on tackling unequal support across
schools for children with difficulties.
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INTRODUCTION
Individual differences in school achievement are shaped by a
complex interplay between genes and environments. Theories of
child development such as the bioecological model emphasise
that the environment is composed of multiple levels, including
not only on the family, but also schools, neighbourhoods, and
wider society, institutions, and culture1. Although a child’s
immediate surroundings where social interactions and formal
learning take place (family and school) are theorised to be most
important, more distal factors (in neighbourhoods, and societal
institutions) should also matter for achievement2–4. Empirical
evidence on the relative importance of these levels remains scarce
because comprehensive measurements of any one of them are
difficult, and, importantly, because it is challenging to separate
effects of these intercorrelated levels. For example, neighbour-
hood effects may be diminished after schools are controlled for5.
Gene-environment interaction research focuses on the environ-

mental contingency of genetic effects (and vice versa)6. An
influential interaction hypothesis is that disadvantage (e.g.,
environments with low intellectual and financial resources)
suppresses genetic influence on cognitive development, whereas
advantage allows genetic differences to be expressed. This model,
often referred to as the Scarr-Rowe interaction7, has led to the
notion that high heritability is a marker of an advantageous
environment8. However, the model has not found consistent
support in empirical data on achievement and cognition. Many,
but not all9 U.S. twin studies have found that genetic influences
are stronger in higher-socioeconomic status families, whereas

European and Australian studies have found null or opposite
results10. A recent twin study found that heritability estimates for
achievement were invariant across levels of parental socio-
economic status in Norwegian, German, and U.S. samples, but in
a Swedish dataset, heritability estimates were stronger in more
disadvantaged families11. Genomic studies have also found largely
null results. Polygenic indices (PGI) – which measure individual-
level genetic propensity for traits – generally appear not to
interact with the environment in analyses of achievement
outcomes. This holds even when modelling numerous PGI and
family environmental measures, including chaos at home, parental
job loss, parental educational attainment and income12–14. It is
debated whether the Scarr-Rowe interaction applies to the full
range of environmental experience or only in extremely deprived
circumstances15.
Three key factors limit the utility of this prior evidence on gene-

environment interaction and the Scarr-Rowe model. First, the
scope of the environments considered has generally been narrow,
focusing on familial ‘micro-environments’16 such as parental
education. Several studies suggest that gene-environment inter-
actions beyond the family warrant further research. Genetic
influence on achievement (at least in the U.S.) appears to be
stronger in the presence of higher neighbourhood income, higher
school quality, and higher quality teachers17–19, in line with the
Scarr-Rowe model. However, we are not aware of any studies that
have simultaneously considered multiple relevant environmental
levels, as the bioecological model would recommend. If effects of
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intercorrelated contexts are not distinguished, educational inter-
ventions could be misdirected.
Second, studies have overwhelmingly tested interactions of

individual genetic differences with whatever specific environmen-
tal measures are available. This strategy, whilst allowing any
relevant interactive contexts to be pinpointed, fails to capture the
total importance of interactions, including with unmeasured or
latent environments. Two studies used multilevel modelling to
estimate the total magnitude of interactions between schools and
PGI20,21. The multilevel modelling approach is useful because it is
agnostic to specific features of environmental levels (which are
challenging to identify and measure accurately) but indicates
whether investigation of specific measured environments at
different levels is justified.
The third difficulty is accounting for the endogeneity of social

contexts that stems from gene-environment correlation22. Indeed,
parents are known to select schools and residential areas for their
offspring. When selection is based on heritable characteristics,
passive gene-environment correlation can occur, whereby off-
spring inherit correlated environments and genetic propensities
from their parents6,23. When children themselves select into
environments (e.g., test scores gain them places at selective
schools), active gene-environment correlation can occur. Estimat-
ing gene-environment interactions in the presence of gene-
environment correlation can lead to false positive results24,25.
Here, we control for gene-environment correlation using the
random nature of parent-to-child genetic inheritance. Controlling
for parental genotypes, effects of offspring genotype are solely
due to random segregation of genetic material during meiosis and
cannot stem from passive gene-environment correlation and
other confounding effects.
In sum, previous studies have not estimated the full magnitude

of gene-environment interactions due to narrow focus on family-
level environments. Where interactions have been found, they
may be confounded by environmental factors on different levels
to those measured, and/or by gene-environment correlation. This
suggests the need for a more comprehensive research strategy
with a wider approach to children’s social contexts.
Here, we use a sample of >23,000 parent-child trios residing

across Norway to quantify how school achievement is influenced
by interactions between students’ educational attainment PGI (EA-
PGI) andmultiple levels of social context. We use multilevel models
to estimate total interactions of PGI with schools, neighbourhoods,
districts, and municipalities, while remaining agnostic to specific
features of these contexts. We use within-family EA-PGI (child PGI
adjusted for parental PGI) to control for passive gene-environment
correlation. Having characterised total interaction effects, we
investigate whether interactions are explained by measured
sociodemographic features or remain to be identified. The
bioecological model leads to the hypothesis that interactions
exist across environmental levels, but are smaller at more distal
levels (e.g., municipalities). The Scarr-Rowe model predicts that
PGI effects are weaker in less advantaged environments (e.g.,
schools with lower average achievement). Norway is a relatively
egalitarian country, where almost all children attend their local
public school, and social differences are minimised by redis-
tributive policies26,27. However, small average effects of schools
and residential areas on education may conceal a greater impact
for students with certain individual characteristics. Our gene-
environment interaction strategy aims to characterise these
children, and ultimately to identify which environments work
best for them.

RESULTS
We integrated genetic data from the Norwegian Mother, Father,
and Child Cohort Study (MoBa) with administrative data on young
people’s standardised national test results in maths, reading and

English in grades 5, 8 and 9, and their school, neighbourhood,
district, and municipality membership. Our models included
23,471 students with non-missing data for achievement, their
educational attainment polygenic indices (EA-PGI), school and
residential identifiers, and parental variables (EA-PGI, educational
attainment and income). Participating students attended
2578 schools and resided in 408 municipalities, 1440 districts,
and 7700 neighbourhoods. There were on average 11 students
per school (range 1-66, median 8), 57.3 per municipality (range 1-
1643; median 20), 16 per district (range 1-268, median 11), and
three per neighbourhood (range 1-51, median 2). Residents of
each neighbourhood live in the same district and municipality, but
those living in the same neighbourhood do not always attend the
same school and vice versa (in 84% of the neighbourhoods, all
students attended the same school; students attending the same
school were from five different neighbourhoods on average). See
Supplementary Table 1 for descriptive statistics of analysis
variables.
We first display the municipality-level averages of three study

variables (Fig. 1). The maps highlight the population-wide
coverage of our genetic and socioeconomic data: only a few
municipalities were not covered by study participants. Figure 1a
and c indicate some municipality-level variation in student
achievement and polygenic indices for educational attainment
(EA-PGI), respectively. Figure 1b shows clearer patterning, reflect-
ing that the parents of children attending schools in and around
major cities (Oslo, Bergen, Trondheim, Stavanger, Tromsø) have
the highest incomes (strongest green colour).

Interactions between students’ EA-PGI and their schools (but
not residential areas)
To test for gene-environment interactions, we compared the fit of
multilevel models with and without varying EA-PGI effects on
achievement (a composite of maths, reading and English subjects)
between schools and between residential areas. We started with a
simple fixed-effects model regressing student achievement on the
EA-PGI and covariates. We then tested if model fit improved upon
inclusion of random intercepts (i.e., main effects of schools and
residential areas), and then of random slopes (i.e., interactions of
student EA-PGI with schools and residential areas) (see Table 1).
This multilevel modelling approach provides estimates of total
latent effects of school and residential levels, without having to
measure specific environments. Since parental EA-PGI were
adjusted for in all models, student EA-PGI effects reflect less-
biased within-family genetic influences, disentangled from envir-
onments selected by parents. Note however that some bias may
remain since PGI were calculated using SNP weights from
between-family GWAS, due to the lack of well-powered within-
family GWAS excluding MoBa.
The best-fitting model – Model 3a in Table 1 – included random

slopes and intercepts for schools, but only random intercepts (not
slopes) for residential areas (see Supplementary Table 2 for fit
statistics and Supplementary Table 3 for results). This indicates
that the effects of students’ EA-PGI depend on schools, but not on
neighbourhoods, districts, or municipalities, which only have small
main effects on achievement. The variance explained in achieve-
ment by residential areas was 1% for municipalities, 1% for
neighbourhoods, and <1% for districts (see Supplementary Table
4a for intraclass correlations).
Three main aspects of the EA-PGI-by-school interaction are

visualised in Fig. 2, which shows school-specific EA-PGI effects on
achievement. First, the mean effect of the EA-PGI on achievement
is 0.22 but there is variation around this average slope between
schools (standard deviation of slopes = 0.034). In the 2.5% of
schools with the weakest effects (red lines), the effect of students’
EA-PGI is <15% of an SD (i.e., 0.22–1.96*0.034), whereas in the
2.5% of schools with the strongest effects (blue lines), EA-PGI have
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effects of >29% of an SD. The variance explained by the EA-PGI is
therefore more than four times higher than in the former group of
schools (~8% versus 2%).
Second, the slope-intercept correlation was negative, meaning

that variation in students’ EA-PGI is less influential for achievement
in the schools with overall higher student achievement. This is
shown in Fig. 2 by the higher positions (intercepts) of the red lines
(weakest slopes) compared to blue lines (strongest slopes).
Third, the interaction also means that the effect of school on

student achievement varies according to student EA-PGI. The
regression lines in Fig. 2 are fanned out at lower values of the EA-
PGI, and taper in as EA-PGI increases. This demonstrates how
schools make more of a difference to the achievements of

students with lower EA-PGI. In contrast, for students with higher
EA-PGI, achievements are more similar regardless of the school.
Figure 3 shows how the effect of school on achievement declines
with increasing student EA-PGI, with schools explaining 4% of the
achievement variance among students with EA-PGI 2 SD below
the mean, but 2% for those with EA-PGI 2 SD above the mean (see
Supplementary Table 3 for calculations).
Importantly, this best-fitting model included strict controls for

selection into schools. Controlling for parental EA-PGI reduces the
link between student EA-PGI and schools by removing pathways
from parental genotype to student achievement (which includes
social selection). Indeed, the within-family child PGI shows no
school-level clustering (Supplementary Table 4b). Moreover, the

Fig. 1 Norwegian municipalities, coloured by average values of variables for students in our analytic sample (a= achievement;
b= family income; c= student EA-PGI). Notes: We aggregated to the broader municipality level due to the anonymity of the school and
neighbourhood identifiers. Maps are based on grade 5 variables and residential identifiers. Grey= no participants resided in that municipality.
Some municipalities are more sparsely populated, such that the depth of colour only reflects one or two participants. This does not hold for
school-level family income (1B), which was based on the average income of all parents of peers attending participants’ schools, not only other
study participants’ parents.
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interaction captures genetic interplay with school-level effects,
where school effects are net of family social background (parental
income and education, and parental EA-PGI), and all latent
neighbourhood, district, and municipality level variation in
achievement.
To explore whether the gene-environment interaction was

driven by a particular school subject, we estimated the best-fitting
model (3a) separately for maths, reading, and English rather than
for the achievement composite. Results indicate that the
interaction involves maths and reading more than English. The
standard deviation of slopes for the EA-PGI effect between schools
was 0.035 for maths, 0.027 for reading, and 0.004 for English.

No interactions between school sociodemographic measures
and student EA-PGI
To complement the multilevel analyses that are agnostic to the
school factors that interact with students’ within-family EA-PGI, we
explored whether five school-level covariates (tested simulta-
neously) explained the interaction. These were school average
parental education, average parental income, proportion of
nonwestern immigrants, and Gini indices of inequality in parental
income and education at each school. None of these measures of
school sociodemographics can explain why genetic effects differ
in strength between schools: the variance in slopes was not
attenuated by including the covariates, and covariate-PGI interac-
tions did not improve model fit. See Supplementary Table 3b for
results and Supplementary Table 2 for fit statistics.

DISCUSSION
We investigated gene-environment interactions for educational
achievement, integrating genetic, school, and residential informa-
tion on >23,000 families living across Norway. By including
multiple levels of environmental context, our study is more
comprehensive than previous efforts. We found evidence for an
interaction between students’ educational attainment polygenic
indices (EA-PGI) and their schools, even in our strict within-family
genetic design, which essentially randomises students to schools.
Higher-performing schools compensate for lower EA-PGI, such
that genetic effects are weaker in these schools. Surprisingly for an
egalitarian context, social differences between schools matter
more for achievement among students with lower EA-PGI.
Measures of school sociodemographics cannot explain the
observed PGI-school interaction. Residential environments (neigh-
bourhoods, districts, and municipalities) contribute little to
variation in achievement and do not interact with students’ EA-
PGI. This social-genetic approach contributes to the goal of
identifying which learning environments work for whom.
The interaction identified here suggests that effects of students’

EA-PGI and of schools on achievement in Norway cannot be
interpreted independently. The within-family EA-PGI effect varies
between schools, with PGI differences among children being less
salient in schools where overall performance is higher. This
complements evidence from the U.S. that higher-status schools
buffer students with lower EA-PGI from dropping out of advanced
mathematics classes28. We also replicated their results in that
there was a particularly strong PGI by school interaction for maths
compared to reading and English. In future it will be important to
identify specific school factors that can minimise the conse-
quences of genetic risks. These results go against the Scarr-Rowe
model, because effects of starting differences in genetic endow-
ment are not suppressed but magnified in the less advantaged
environments. However, in a different context without Norway’s
resource redistribution to ensure high‐quality and universally
available education (such as that of the original Scarr-Rowe study),
genetic effects might not be strongest in the best-performing
schools.

Importantly, the interaction also reveals that the lower the
student EA-PGI, the greater the variation in achievement created
by schools. Given that almost all Norwegian students attend
public school, it is surprising to observe this school-driven social
inequality, concentrated among those who may need support the
most. This holds even after strict controls for passive gene-
environment correlation, family socioeconomic background and
residential area. Policymakers may want to focus on finding ways
to equalise opportunities between schools for students who are
equally low on the EA-PGI distribution. Our finding also suggests
that social scientists should consider individual differences when
estimating school effects. Omnibus estimates, which are small in
many studies27,29, conceal a greater importance of school for
students with lower EA-PGI.
The observed interaction between students’ EA-PGI and their

schools is latent since our multilevel models are agnostic to school
characteristics. This provides necessary justification for investigat-
ing specific school factors driving interactions. However, none of
our five measures of school sociodemographics appear to be
involved. If we had relied on a measured-environment approach,
the gene-environment interaction could not have been detected.
The gap between our finding of latent interactions, and the
negligible contribution of measured covariates, highlights the
need to better characterise aspects of Norwegian schools that
change the role of children’s individual genetic differences.
Although factors such as class size may have small main effects
on achievement30, they could still exert important influence in

Table 1. Model-fitting procedure.

Model Fixed effects Random effects

1. Base: EA-PGI effects Child EA-PGI
Parent EA-PGI,
income,
education
Grade

Individual child

2. School/area effects Child EA-PGI
Parent EA-PGI,
income,
education
Grade

Individual child
a) School
b) + Neighbourhood
c) + District
d) + Municipality

3. EA-PGI-by-school/
area interactions

Child EA-PGI
Parent EA-PGI,
income,
education
Grade

Individual child
a) Child EA-PGI | School
b) + Child EA-
PGI | Neighbourhood
c) + Child EA-PGI | District
d) + Child EA-
PGI | Municipality

4. Accounting for
school effects

Child EA-PGI
Parent EA-PGI,
income,
education
5 school
measures
Grade

Individual child
Child EA-PGI | School

5. Accounting for EA-
PGI by-school
interactions

Child EA-PGI
Parent EA-PGI,
income,
education
5 school
measures
Each school
measure * Child
EA-PGI
Grade

Individual child
Child EA-PGI | School

Note that | indicates a random slope effect. Note that 10 principal
components reflecting parental genetic ancestry were included as fixed
effects in all models (not shown in Table 1).
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interaction with genetic differences between children. Our
approach offers a framework within which to test the interactive
roles of school characteristics.
As proposed by the bioecological model, we find that more

distal environmental levels (neighbourhoods, districts, and muni-
cipalities) are less important for student achievement than schools
are. However, unlike the bioecological model, we observed that
the total latent variance explained by residential areas is small
(though statistically significant), and area effects do not interact
with children’s individual genetic differences. This could be
because academic skills in reading and mathematics are the
direct targets of instruction in schools but not residential areas,
making schools the level at which individual proclivities for
educational success are amplified or minimised. Practically, our
finding that Norwegian residential areas do not vary considerably
in ways that affect children’s school performance (e.g. all
neighbourhood differences in our sample explain just 0.5% of
the variance) suggests that identifying residential factors as
intervention targets might not greatly reduce achievement
differences of social origin. Nonetheless, the results do not
diminish the importance of residential areas. For example,
municipalities are essential for providing educational services
and allocating resources, and regional inequalities may adversely
affect many other life outcomes such as later educational
attainment and physical health.
This study is subject to limitations. First, the generalisability of

our results is limited because only participants of European
ancestries were included. Moreover, despite the near complete
coverage of achievement, school and residential identifiers from
administrative records, results could be affected by non-random
participation in the MoBa cohort study. Second, current EA-PGI do
not capture the full genetic component of education, so our

analyses do not inform about the total magnitude of genetic
interactions with schools. Third, EA-PGI are based on information
pooled across many contexts, so by design might not reflect the
portion of the heritability of educational attainment that is most
sensitive to differences between schools and residential areas.
Future research could adopt a less strict test for gene-environment
interaction by using PGI for environmental sensitivity31 within our
multilevel framework. Finally, while we control for passive gene-
environment using parental EA-PGI, children’s own genetic
propensities could theoretically still influence their school
attendance. However, within-family EA-PGI are not clustered in
schools. The absence of selective elementary and middle schools
in Norway is also reassuring, in contrast to the United Kingdom,
where exam differences between selective and non-selective
schools primarily reflect heritable characteristics involved in
admission32.
Our finding of a latent interaction between schools and

children’s EA-PGI lays the foundation for further work identifying
how schools magnify or suppress the effects of genetic differences
between children on their achievement. More detailed facets of
children’s experiences of school may account for part of the latent
interaction. Understanding how schools differentiate students
with similarly low EA-PGI may help to identify social barriers to be
removed through policy. This is an exciting prospect given the
difficulties involved with identifying interventions via randomised
controlled trials and other designs33. Future studies should also
investigate within-school interactions with children’s genetics.
Indeed, the similarity between Norwegian schools leaves room for
important within school effects of teachers and friends. Addition-
ally, family investments and educational support might moderate
school effects.
In sum, social influences on academic achievement are

theorised to be multilevel and interactive. In a large population-
wide sample we see that schools but not residential environments
(which only have small effects on achievement) interact with
students’ EA-PGI. This social-genetic approach is necessary for a
complete understanding of how children’s social environments
work, and how to reduce school-driven differences in

Fig. 3 School effects on achievement vary across values of the
within-family EA-PGI. For students with within-family EA-PGI that
are 2 SD below the mean, schools explain ~4% of the phenotypic
variance, whereas for students with PGI 2 SD above the mean,
schools explain ~2%.

Fig. 2 School-specific associations between the within-family EA-
PGI and achievement. In red are regression lines for the 2.5%
schools in which within-family EA-PGI effects are weakest; in blue
are the 2.5% of schools where PGI effects are strongest; R2=
variance explained in achievement. The within-family EA-PGI has a
weaker effect in schools where average student achievement is
higher. School differences in achievement are wider among
students with lower EA-PGI. Note that the sample size was 23471
children attending 2578 schools.
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achievement between children with otherwise similar individual
characteristics.

METHODS
The Norwegian context
Norway is a wealthy social democratic welfare state34 with low
unemployment and relatively low-income inequality compared to
other wealthy nations35. Nonetheless, wealth inequality36 and
child poverty are substantial, and exacerbating over time37. With
respect to Norway’s education system, the public sector at the
municipality level is responsible for providing various welfare
services, including (free) compulsory education. Compulsory
education is comprehensive with a common curriculum for all
students, and there is no tracking. Fewer than 4% of students
attend private schools, which are mainly schools with alternative
pedagogical traditions, religious schools, or international schools.
With respect to residential patterns, most elementary school
children attend their local public school.

Sample
The Norwegian Mother, Father and Child Cohort Study (MoBa38) is
a prospective population-based pregnancy cohort study con-
ducted by the Norwegian Institute of Public Health. Pregnant
women were recruited from across Norway from 1999 to 2009.
The women consented to initial participation in 41% of the
pregnancies. Of fathers invited to participate, 82.9% consented.
Parents consented on behalf of children. The total cohort includes
approximately 114,500 children, 95,200 mothers and 75,200
fathers. To date, 98,110 individuals who are part of a trio (both
parents and a child) from MoBa have been genotyped.
The present analyses were conducted on a subsample of

parent-offspring trios with complete data for genome-wide
genotyping, and administrative records of educational achieve-
ment, school, neighbourhood, district, and municipality member-
ship, linked to MoBa through the Norwegian national ID number
system. The administrative data are of high quality, and do not
suffer from attrition39,40. Prior to analysis, we restricted the sample
to one child per family, choosing one sibling at random. We also
restricted the sample to those with complete register data on
parental education and income. In further analyses, we also
restricted the sample to those with complete register data on
school sociodemographics.

Ethics
The establishment of MoBa and initial data collection was based
on a licence from the Norwegian Data Protection Agency and
approval from The Regional Committees for Medical and Health
Research Ethics. The MoBa cohort is now based on regulations
related to the Norwegian Health Registry Act. The current study
was approved by The Regional Committees for Medical and
Health Research Ethics (project # 2017/2205).

Measures
School achievement. Standardised national test results for maths
and reading at grades 5, 8, and 9, and English at grades 5 and 8
were obtained through linkage to Norway’s National Education
Database. Introduced in 2007, these tests are mainly used to
monitor school development over time. Tests are compulsory,
with 96% of all students in Norway taking them; students with
special needs and those following introductory language courses
may be exempt. Results are conveyed to teachers and parents but
have no direct consequence for students. We residualised
students’ test scores for sex, current age (to capture birth cohort
effects), and the exact age when they took the tests. We created
‘core achievement’ measures as mean scores at each grade across

available subjects and centred these to have mean zero, and
standard deviation one. Our prior study showed that the
standardised test outcomes are approximately normally distrib-
uted, with no indication of skewness or of ceiling effects, and were
strongly correlated with item-response theory-derived scores21.

School, neighbourhood, district, and municipality identifiers. We
matched children’s achievement results to the schools they
attended and areas they lived in when they took each test.
School identifiers were obtained from the National Education
database (NUDB), and identifiers for three levels of residential
information (neighbourhoods, districts, and municipalities) were
obtained from the Norwegian central population register.
Neighbourhood identifiers are for basic statistical units, called
grunnkretser, which were designed by Statistics Norway to cover
consistent numbers of inhabitants (~350) living in homogeneous
conditions. Neighbourhoods are nested within larger delområde,
or districts, which are in turn nested within municipalities (known
as kommune in Norwegian). Children from one neighbourhood
sometimes attend different schools, and children attending the
same school may live in different neighbourhoods.
Importantly, to harmonise the identifiers such that students

who resided nearby were identified as such, we converted as
many identifiers as possible to match 2018 values. We chose
2018 since this is the most recent time-point covered by our
linked administrative data. The majority of the changes between
2011-18 (the years that MoBa children took the standardised
national tests) were merges of nearby municipalities and districts,
and are summarised here: https://www.ssb.no/metadata/alle-
endringer-i-de-regionale-inndelingene. For example, in 2018,
0702 Holmestrand and 0714 Hof slått municipalities were merged
to create 0715 Holmestrand. We therefore changed any occur-
rences of 0702 and 0714 to 0715. After merging to 2018
boundaries, the total number of municipalities in our analysis
sample reduced from 460 to 408. We also performed our analyses
using the original residential identifiers (before harmonising to
2018 values), and reached the same conclusions (same best-fitting
model, with almost identical estimates; see Supplementary Tables
5a–e). Note that it was not possible to use 2018 values for areas
that were split into new identifiers for smaller areas. For example,
in 2017, Oslo’s Grønland district 1 was split into three new areas
(Grønland 7, 8 and 9), but it is unknown which of the three sub-
identifiers should be given to students for 2011-16. Also note that
changes involving the most fine-grained level (neighbourhood)
were not possible to harmonise, because these, like school
identifiers, were anonymous. These limitations mean that for a
minority of residential areas we can only detect within-cohort area
effects on achievement.

Sociodemographic measures for schools and residential areas. To
complement the latent analyses, we tested whether specific
sociodemographic measures could explain interactions identified
through multilevel modelling. We created sociodemographic
measures by aggregating administrative data from all parents of
students at each school with register data, not only MoBa
participants. Since interactions were solely present at the school-
level, we did not test measures aggregated to residential areas.
Measures were intended to capture both the average socio-
demographic background among students within each school,
and the variability of sociodemographic backgrounds of students
within each school. For each school, we included five measures.
The first measure was the average years of completed education
of parents, converted from Norwegian Standard Classification of
Education (NUS2000) categories, and measured when students
were 16. The second sociodemographic indicator was the average
parental pre-tax annual income from gainful employment
including self-employment but not capital income or social
welfare transfers. We averaged the income of both parents across
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the years that children were aged 11-15, and ranked their income
compared to other parents in the same birth cohort. Third and
fourth, we measured socioeconomic inequality by calculating Gini
coefficients in reported levels of parental education and income,
respectively. Gini is a widely used single measure of inequality,
and ranges from 0 to 1, with 0 indicating absolute equality and 1
indicating absolute inequality. Fifth, we calculated the proportion
of children who are non-Western immigrants and/or who are the
children of non-Western immigrants. We created these broad
measures in the absence of more detailed school data. Notably,
the measures could capture effects intrinsic to specific schools
(e.g., peer effects) or broader social stratification (e.g., composition
of the school catchment area). If the latter is true, then these
variables could be considered additional controls for selection into
schools and neighbourhoods.
We used the same measures of parental educational attainment

and earned income as individual-level control variables in all
analyses.

Genotype quality control
The current MoBa genomic dataset comprises imputed genetic
data for 98,110 individuals (~32,000 parent-offspring trios; before
quality control), derived from nine batches of participants, who
make up four study cohorts. Within each batch, parent and
offspring genetic data were quality controlled separately. Pre-
imputation quality control criteria have been described in
previous publications. We conducted post-imputation quality
control, retaining SNPs meeting the following criteria: imputation
quality score ≥ 0.8 in all batches, non-duplicated (by position or
name), call rate >98%, minor allele frequency >1%, Hardy-
Weinberg equilibrium p < 0.001, not associated with genotyping
batch at the genome-wide level, and not causing a mendelian
error. We removed individuals with the following criteria:
heterozygosity outliers (F-het+ /− 0.2), call rate <98%, reported
sex mismatching SNP-based sex, duplicates (identified using
PLINK’s41 –genome command as having pihat >=0.98, and
distinguished from monozygotic twins through linkage to unique
IDs in the population register, plus age, sex, and kinship
information within MoBa), individuals with excessive numbers of
close relatives (cryptic relatedness) and mendelian errors. To
minimise environmental confounding, we identified a sub-sample
of individuals with European ancestries via principal component
analysis using the 1000 Genomes reference; thresholds for
exclusion of outliers were based on visual inspection of a plot of
principal components 1 and 2. The final numbers of individuals
and SNPs passing quality control were 93,582 and 6,797,215,
respectively. Principal components of genetic ancestry were
computed for all participants using PLINK’s –within and –pca-
clusters commands, based on an LD-pruned version of the final
quality-controlled genotype data.

Educational attainment polygenic index (EA-PGI)
We generated EA-PGI for all 93,582 parents and children in MoBa
who passed quality control, based on genome-wide association
summary statistics42 excluding 23andMe and MoBa samples. We
used the PRSice software to calculate scores using all SNPs (i.e.,
p-value threshold of 1), with clumping parameters kb= 500, p= 1,
r2= 0.25. We computed mid-parental PGI by taking the average
maternal and paternal PGI. PGI for children from independent
families and mid-parental PGI (hereafter ‘parental PGI’) were then
centred to have mean zero, and standard deviation one. In all PGI
analyses, we included parental PGI as controls, such that effects of
offspring PGI are within-family direct genetic effects. We also
included principal components (5 based on maternal data, 5
based on paternal data) to control for population stratification in
the parental EA-PGI effects.

The advantage of the within-family EA-PGI is that it controls for
non-random selection of schools by parents. We conducted a
proof-of-concept test of this by quantifying the degree of
clustering of children’s EA-PGI in schools. The intraclass correlation
coefficient indicated that schools capture 2.6% of the variance in
the child EA-PGI. The child EA-PGI was clustered even less in
residential areas (ICCs for at neighbourhood, district and
municipality were 0.3%, 0.1%, and 1.2%, respectively; Supplemen-
tary Table 4b). However, once parent EA-PGI is adjusted for, 0% of
the variance in within-family child EA-PGI is explained by schools.
This implies that conditional on parental EA-PGI, the sorting of
students into schools is random and we can interpret the school
slopes based on the within-family PGI causally. Note that the
degree of clustering of genetic risk in schools is likely to be larger
than estimated using the EA-PGI, which only explains ~2-8% of the
variance in child achievement.
Notably, although we treat parental EA-PGI as control variables,

they allow us to estimate a parental indirect genetic effect. This
represents an environmental effect of parents’ education-linked
genetics on the child’s achievement. However, parental indirect
genetic effects, and their moderation, capture selection into
schools and residential areas and may be biased by population
stratification, assortative mating, and passive gene-environment
correlation (unlike the within-family child genetic effect).

Statistical analyses
To test for interactions of individual genetic propensity for
educational attainment with schools and residential areas, we
compared a series of increasingly complex multilevel models (11
in total). To ensure that findings were not simply produced by
chance, we formally compared AIC fit statistics.
The base model (Model 1) estimated the association between

achievement and the within-family EA-PGI (child PGI controlling
for mid-parent PGI). We pooled data across grades by including
individual identification number as a random intercept, and time-
point as a fixed effect to account for mean differences in scores
across time. Time-point was coded as a continuous variable
centred with 0 for grade 9, -1 for grade 8, and -4 for grade 5. Note
that the grade 9 composite only includes maths and reading,
whereas achievement composites for grades 5 and 8 include
maths, reading and English.
In Models 2a-d, we tested the degree to which achievement

varied between social contexts. We started with achievement
variation at only the most proximal level (school; Model 2a), and
eventually allowed for context effects at all levels (school,
neighbourhood, district, and wider municipality; Model 2d).
Specifically, we added random intercepts for schools and
residential areas in multilevel regression models. Residential
clusters are nested, with neighbourhoods sitting within districts,
and districts sitting within municipalities. Since children living in
one area can attend different schools, and schools contain
children living in multiple areas, schools are cross classified with
the residential clusters.
In Models 3a-d, having established the best-fitting pattern of

contextual stratification of achievement, we used random slope
models to estimate the extent that contexts interact with EA-PGI
effects. In our models, we allowed PGI effects to vary for each
cluster with significant intercept variance and tested whether
model fit improved.

Environments explaining the variability of slopes
To investigate which characteristics explaining any gene-
environment interactions, we re-estimate the best-fitting multi-
level model for each school subject, adding fixed effects for five
environmental measures (Model 4), and then environment-by-PGI
interaction terms (Model 5). School environmental influences on
achievement are likely multifactorial, operating in a ‘poly-

R. Cheesman et al.

7

Published in partnership with The University of Queensland npj Science of Learning (2022)    29 



environmental’ mode akin to polygenicity. We therefore included
measured environments simultaneously. If measured environ-
ments account for an interaction, the variance in slopes will be
reduced and model fit will be improved in Model 5 compared to
Model 4. The five sociodemographic measures were tested jointly.
Notably, while we term these observed measures ‘environments’,
they are themselves partially under genetic influence.

Model-fitting and comparisons
In all models, 10 principal components of genetic ancestry were
included as covariates to control for population stratification, 5
based on maternal genotype and 5 paternal components.
Although effects of the child EA-PGI are robust to population
stratification (when parental scores are included), the inclusion of
PCs helps us interpret the parental genetic effect, which may be
biased by population stratification. All models included controls
for family social background (parental education and income), to
aid causal interpretation of slopes and intercepts for schools and
residential areas.
Models were compared using the AIC fit statistic, which

calculates the trade-off between model fit and model complexity
using maximum likelihood modelling with a penalty for the
number of parameters. If the model with, for instance, the random
slopes across schools, has a lower AIC value than that of a simpler
model, this is evidence that gene-environment interactions should
be included for an optimal approximation of the underlying data
generating processes. We also report p-values from the model
comparison tests.

Software
Maps were created with the R package fhimaps43, using the 2019
municipality boundaries (only 1 had to be changed from the 2018
identifiers used in our main analyses). Model-fitting was con-
ducted in R with the lme4 package44.

DATA AVAILABILITY
MoBa data are available to individuals who obtain the necessary permissions from
the data access committee (see https://www.fhi.no/en/studies/moba/for-forskere-
artikler/research-and-data-access/).

CODE AVAILABILITY
Analysis code can be found at https://github.com/rosacheesman/genes-schools-
areas. All additional software used to perform the analyses are available online.
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