
Original Research Article

MDM Policy & Practice
2022, Vol. 7(1) 1–12
� The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/23814683221083839
journals.sagepub.com/home/mpp

Sample Size and Model Prediction Accuracy

in EQ-5D-5L Valuations Studies: Expected
Out-of-Sample Accuracy Based on
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Abstract

Background. National valuation studies are costly, with ; 1000 face-to-face interviews recommended, and some
countries may deem such studies infeasible. Building on previous studies exploring sample size, we determined the
effect of sample size and alternative model specifications on prediction accuracy of modeled coefficients in EQ-5D-
5L value set generating regression analyses. Methods. Data sets (n = 50 to ; 1000) were simulated from 3 valuation
studies, resampled at the respondent level and randomly drawn 1000 times with replacement. We estimated utilities
for each subsample with leave-one-out at the block level using regression models (8 or 20 parameter; with or without
a random intercept; time tradeoff [TTO] data only or TTO + discrete choice experiment [DCE] data). Prediction
accuracy, root mean square error (RMSE), was calculated by comparing to censored mean predicted values to the
left-out block in the full data set. Linear regression was used to estimate the relative effect of changes in sample size
and each model specification. Results. Results showed that doubling the sample size decreased RMSE by on average
0.012. Effects of other model specifications were smaller but can when combined compensate for loss in prediction
accuracy from a small sample size. For models using TTO data only, 8-parameter models clearly outperformed 20-
parameter models. Adding a random intercept, or including DCE responses, also improved mean RMSE, most pro-
minently for variants of the 20-parameter models. Conclusions. The prediction accuracy impact of further increases
in sample size after 300 to 500 were smaller than the impact of combining alternative modeling choices. Hybrid mod-
eling, use of constrained models, and inclusion of random intercepts all substantially improve the expected prediction
accuracy. Beyond a minimum of 300 to 500 respondents, the sample size may be better informed by other considera-
tions, such as legitimacy and representativeness, than by the technical prediction accuracy achievable.

Highlights

� Increases in sample size beyond a minimum in the range of 300 to 500 respondents provide smaller gains in
expected prediction accuracy than alternative modeling approaches.

� Constrained, nonlinear models; time tradeoff + discrete choice experiment hybrid modeling; and including a
random intercept all improved the prediction accuracy of models estimating values for the EQ-5D-5L based
on data from 3 different valuation studies.

� The tested modeling choices can compensate for smaller sample sizes.
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Introduction

Health state values are estimated for instruments measur-
ing health-related quality of life and can be used to mea-
sure and compare the utility of different health outcomes
across patient groups and interventions. The EQ-5D-5L
measures health using 5 dimensions (mobility, self-care,
usual activities, pain/discomfort, and anxiety/depres-
sion), and with 5 severity levels per dimension, can define
3125 unique health states. Valuation studies for the EQ-
5D-5L are guided by protocols developed by the
EuroQol Group, the scientific nonprofit foundation that
owns the EQ-5D. The EQ-VT protocol, developed as
part of a research program to improve comparability and
data quality in EQ-5D valuation studies,1 provides stan-
dard procedures and requirements for EQ-5D valuation
studies.2 Following the EQ-VT protocol, time tradeoff
(TTO) and discrete choice experiment (DCE) tasks are
administered in computer-assisted one-to-one face-to-
face interviews with a minimum of 1000 respondents.3,4

A Norwegian valuation study for health states defined
by the EQ-5D-5L was initiated in 2019, with data collec-
tion planned from the end of 2019 to mid-2020.5 Data
collection was stopped roughly mid-way, in March 2020,
due to social distancing measures following the COVID-
19 pandemic, at which point 542 interviews had been
completed. Faced with a considerably smaller sample
size than the recommended 1000, the motivation for this
study was to assess whether the data already collected

could be considered sufficient for estimating values for
the Norwegian general population.

Even without the complication of an ongoing pan-
demic, completing 1000 face-to-face interviews can be
challenging and costly, and many countries may deem
such studies as infeasible. Interviewers must be trained
extensively and followed up closely throughout data col-
lection, as the data are prone to interviewer effects.6 Each
interview takes considerable time, with an expected total
interview time of 58 to 71 min.7 To represent the general
population, studies often include some geographic aspect
to their sampling strategy,8–10 as did the Norwegian
study, which can require considerable travel.

Some cost-saving methods have been considered, such
as increasing the number of direct valuations per respon-
dent or increasing power by including data from other
studies.11,12 In early EQ-5D valuation studies, the sample
size varied significantly,13 and recommendations for sam-
ple size of 1000 in the EQ-VT protocol has been claimed
to be ‘‘based on some assumption without support from
empirical data and provided limited theoretical justifica-
tion,’’ and sample size estimations suggest that far fewer
than 1000 could be sufficient for estimating EQ-5D-3L
values.14 Another simulation study showed stable esti-
mates for EQ-5D-5L health state values using a VAS
model with sample sizes greater than 500, given that 80
to 120 health states were directly valued.15

Most EQ-5D-5L value sets have used 20-parameter
additive models based on TTO responses only to estimate
values, but value sets can be modeled in different ways,
for example, by including both TTO and DCE responses
in a hybrid model. One may also include random effects,
latent classes, allow for heteroscedasticity, or use differ-
ent functional forms, which may influence the required
sample size.12,13,16,17

This study aims to provide empirically based back-
ground for discussion of sample size and modeling
choices by comparing effects of increases in sample size
and alternative modeling specifications on estimates of
expected prediction accuracy based on data from pub-
lished EQ-5D-5L valuation studies and data collected so
far for the Norwegian valuation study.
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Methods

In addition to the Norwegian data collected so far, we
included data from the Netherlands9 and the United
States7 EQ-5D-5L valuation studies. From each study,
only respondents used in the final model and value set
were included. All 3 studies valued the EQ-5D-5L using
the EQ-VT protocol and had similar, although not iden-
tical, sampling strategies. Respondents in all 3 studies
were administered the composite TTO (cTTO), a variant
of the TTO using lead time for the valuation of health
states considered worse than being dead, and DCE. The
86 directly valued health states were divided over 10 pos-
sible TTO blocks, and 28 DCE blocks, all designed to
have a similar composition in health state severity. The
same 86 unique health states, and 100 block/state combi-
nations, were included in the block design of all 3 studies.
Respondents were randomly assigned 1 block of each to
value. Each block, TTO and DCE, respectively, included
10 TTO tasks and 7 DCE tasks.

Samples

The Norwegian (NO) study18 started data collection
November 2019 and had completed 542 interviews by
March 2020 when data collection was suspended due to
restrictions imposed in response to the COVID-19 pan-
demic. Six geographic areas within 4 main regions of
Norway were randomly selected with probability propor-
tionate to the number of residents in each area. Quotas per
area mirrored the proportion of residents per region and
area. Stratified random sampling of locations from selected
location types and use of quotas were applied to ensure
representativeness according to age, sex, and education as
well as increasing the number of respondents who may
typically be hard to reach, for example, those in poor
health, those with young children, and those with other
ethnic backgrounds. Interviews were conducted at each
location with computer-assisted personal interviews in
accordance with EQ-VT version 2.1, which in addition
to protocol defined in version 1.0 included TTO prac-
tice states during the introduction, quality control
monitoring, a feedback module, and a dynamic ques-
tion after the wheelchair example.4

The Netherlands (NL) study9 included TTO valua-
tions from 979 respondents. A stratified sampling
approach, with quotas for age, sex, and education based
on the distribution of the general population in the
Netherlands, was used. Respondents were randomly
drawn from commercial panels until all quotas were met.
Data collection was completed in selected cities, achiev-
ing geographical spread across the country. Data were
collected in autumn 2012, with computer-assisted per-
sonal interviews in compliance with EQ-VT version 1.0.4

The United States (US) study7 included TTO valua-
tions from 1062 respondents. Three different recruitment
strategies were used: use of a web-based recruitment tool
to contact potential respondents in recruitment areas,
promotion of the study at student chapters near recruit-
ment sites and community platforms, and on-site recruit-
ment during data collection. Six metropolitan areas were
selected, ensuring representativeness and sampling in all
census regions. Data were collected between May and
September 2017, with computer-assisted personal inter-
views in compliance with EQ-VT version 2.1.

Assessment of Prediction Accuracy

Resampling of data. Data were resampled with replace-
ment at the level of individual study respondents, to cre-
ate data sets with sample sizes ranging from 50 to the
maximum number of respondents observed in each study
(; 1000 for NL and US, ; 500 for NO), by intervals of
50. To reflect the design of the EQ-5D-5L valuation stud-
ies, in which respondents are conventionally assigned 1 out
of 10 blocks of cTTO states for administration, resampling
was balanced over TTO block. For each sample size in
each study, we drew 1000 resamples. Each sampled respon-
dent was attached their cTTO and DCE responses and
assigned a pseudo-ID for use in mixed-effects modeling,
ensuring a unique ID per observation even if the same
respondent was resampled more than once.

In all 3 studies from which data were retrieved, each
participant was administered 10 health states for cTTO
valuation and 7 DCE state pairs. Thus, the sampling pro-
cedure would result in data sets with a minimum of 500
to a maximum of approximately 10 000 individual TTO
values (approximately 5000 in the largest sample for the
NO study) and 350 to approximately 7000 DCE choices.

Out-of-sample predictive accuracy by cross-validation. For
each subsample, we used a cross-validation–based method
to estimate out-of-sample predictive accuracy. The cross-
validation method replicates that of previous cross-
validations comparing models,17 by fitting a model on one
part of the data and predicting values on the other, here by
using a leave-one-out procedure at the level of TTO blocks,
repeated until predicted values have been estimated for all
10 TTO blocks (Appendix Figure 2). To provide informa-
tion about expected out-of-sample predictive accuracy as a
function of sample size and the selected statistical model,
we estimated the mean values for each TTO block/state
combination from the full data set as the observed ‘‘true’’
value for comparison. As the cTTO values are left censored
at 21 by the construction of the task, we used likelihood-
based censored mean values throughout. Against this
benchmark for comparison, all predictions were judged in
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terms of the estimated root mean square error (RMSE)
and summarized per sample size and model. The procedure
followed these steps:

1. Respondents were sequentially left out by their
assigned TTO block.

2. All candidate statistical models were fitted to the
data from the remaining respondents.

3. Values for the 10 health states in the left-out TTO
block were predicted for each candidate model.

4. Predicted values for health states in each left-out
block was compared with observed censored mean
values for the same block in the full sample and pre-
diction accuracy estimated in terms of RMSE.

5. The previous steps were repeated until each block
had been left out per sample, all models fitted to the
rest of the data, and predicted values based on these
models were compared with observed values.

Modeling Strategies Considered

A total of 8 candidate models were tested for
comparison.

Two primary models were used; the ‘‘standard’’ addi-
tive 20-parameter model (Equation 1) and the con-
strained 8-parameter cross-attribute level-effect model
(Equation 2):

1. 20-parameter model:

disutility=&a+

bMO2&3&MO2 +&bSC2&3&SC2 +&bUA2&3&UA2 +&bPD2&3&PD2 +&bAD2&3&AD2 +

bMO3&3&MO3 +&bSC3&3&SC3 +&bUA3&3&UA3 +&bPD3&3&PD3 +&bAD3&3&AD3 +

bMO4&3&MO4 +&bSC4&3&SC4 +&bUA4&3&UA4 +&bPD4&3&PD4 +&bAD4&3&AD4 +

bMO5 3 MO5 +bSC5 3 SC5 +bUA5 3 UA5 +bPD5 3 PD5 +bAD5 3 AD5 + e

2. 8-parameter model:

disutility=&a+

& bMO 3 MO2 +bSC 3 SC2 +bUA 3 UA2 +bPD 3 PD2 +bAD 3 AD2ð Þ3 bL2 +

& bMO 3 MO3 +bSC 3 SC3 +bUA 3 UA3 +bPD 3 PD3 +bAD 3 AD3ð Þ3 bL3 +

& bMO 3 MO4 +bSC 3 SC4 +bUA 3 UA4 +bPD 3 PD4 +bAD 3 AD4ð Þ3 bL4 +

bMO 3 MO5 +bSC 3 SC5 +bUA 3 UA5 +bPD 3 PD5 +bAD 3 AD5ð Þ+ e

These 2 primary models were used as TTO-only and TTO + DCE hybrid variants and both with and without ran-
dom intercepts at the level of individual respondents. In the presentation of the results, models specifications are
coded T for TTO only and H for hybrid models, 8 for 8-parameter models, and 20 for 20 parameters, and r indicat-
ing the inclusion of a random intercept, so that T20r denotes the 20-parameter TTO-only model with a random inter-
cept, and T20 denotes the same 20-parameter TTO-only model without a random intercept (Appendix Table 1). All
candidate models and alternative model specifications have been used to value EQ-5D-5L health states for national
EQ-5D value sets. The models included disutility per health state as the response and were right-censored at 2, the
maximum disutility allowed in the TTO task.

In the hybrid models (Equation 3), the TTO likelihood was estimated precisely as for the TTO only models (i.e., a
Tobit model of expressed disutility), right-censored at 2, the maximum disutility allowed in the cTTO task. The DCE
likelihood was estimated using a conditional logit model. To account for the difference between the latent scale of the
conditional logit model and the utility scale of the TTO model, the estimated value was multiplied by a nuisance para-
meter u in the DCE side.

3. Hybrid model:

argmax
a,b,s, u

L a,b,s, u; xð Þf g=
Yn

i= 1

f xi � f atto,bð Þ,sð Þ xi\2, tto

1� F xi � f atto, bð Þ, sð Þ xi � 2, tto

xi 3
logit adce +bð Þ

u
+

1� xið Þ3 1� logit adce +bð Þ
u

� � dce

8>>>>><
>>>>>:
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where logit(x) is the standard logistic function 1
1+ e�x =

1+ tanh x
2ð Þ

2
; f �ð Þ is the 8- or 20-parameter model; u is a nui-

sance scaling parameter between TTO and DCE para-
meters, to account for the latent scale of the DCE; f is the
normal probability density function; F is the normal
cumulative density function; s is the variance parameter
for the normal distribution; a is the intercept (separate for
TTO and DCE); and b is a vector of parameters for f. For
a similar model with random intercepts, a further para-
meter is fitted for the between-subjects variance.

In the absence of a natural gold standard for compari-
son, we used the mean level of prediction accuracy for
the standard additive 20-parameter model with the larg-
est sample size (n = ; 1000) as a threshold to compare
models at different sample sizes.

Effect of Sample Size and Model Choices

To assess the relative effect size of increases in sample size
and each of the model choices (20- v. 8-parameter model,

adding a random intercept and including DCE data in a
hybrid model), a linear regression model was applied to
estimate the effect of increasing the sample size and each
model choice on the RMSE per study using the following
formula:

RMSE ; b1log2 ssð Þ+b2par8+b3rand

+b4hyb+b5study+ e

The sample size was included in the model as the binary
logarithm (log2) of sample size, giving estimates inter-
preted as the effect of doubling sample size. Each of the
model choices were coded as dummy variables (par8
indicating 8 parameter v. 20 parameter, coded 1 for 8
parameter; rand indicating the inclusion of a random
intercept v. not, coded 1 for with random intercept; hyb
indicating TTO + DCE hybrid model v. TTO-only
model, coded 1 for hybrid model). Study was included in
the model as a fixed effect (coded as a factor with values
NL, US, NO).

Table 1 Mean RMSE per Study and Sample Size (ss) for TTO-Only (T)/Hybrid (H) 20-/8-Parameter Models, with/without
Random Intercepta

Study ss T20 T20r T8 T8r H20 H20r H8 H8r

Netherlands 50 0.178 0.164 0.130 0.132 0.127 0.138 0.114 0.126
100 0.136 0.128 0.105 0.108 0.103 0.109 0.096 0.103
200 0.112 0.106 0.091 0.092 0.089 0.092 0.086 0.089
350 0.100 0.095 0.084 0.085 0.083 0.084 0.082 0.082
500 0.095 0.091 0.081 0.081 0.080 0.080 0.080 0.079

750 0.090 0.087 0.079 0.079 0.078 0.078 0.078 0.077
950 0.088 0.085 0.078 0.078 0.077 0.077 0.078 0.076

; 990* 0.088 0.085 0.078 0.077 0.077 0.076 0.077 0.076
United States 50 0.209 0.189 0.154 0.157 0.146 0.169 0.132 0.154

100 0.159 0.146 0.124 0.126 0.120 0.130 0.113 0.122
200 0.128 0.119 0.108 0.107 0.105 0.110 0.102 0.104
350 0.113 0.104 0.101 0.097 0.099 0.096 0.098 0.095

500 0.107 0.097 0.098 0.092 0.097 0.090 0.096 0.090
750 0.101 0.092 0.096 0.089 0.094 0.086 0.095 0.087
950 0.099 0.090 0.095 0.087 0.094 0.084 0.094 0.086

1000 0.099 0.089 0.094 0.087 0.093 0.084 0.094 0.086
1050 0.098 0.089 0.094 0.086 0.093 0.084 0.094 0.085
1100 0.098 0.088 0.094 0.086 0.093 0.083 0.094 0.085

1134 0.098 0.088 0.094 0.086 0.093 0.083 0.094 0.085
Norway 50 0.174 0.163 0.136 0.138 0.137 0.151 0.126 0.141

100 0.144 0.137 0.120 0.120 0.121 0.127 0.113 0.119
200 0.128 0.120 0.110 0.109 0.112 0.113 0.106 0.107
350 0.120 0.111 0.106 0.102 0.108 0.106 0.103 0.101

500 0.117 0.108 0.104 0.100 0.106 0.103 0.101 0.099

RMSE, root mean square error; TTO, time tradeoff.
ar indicates with random intercept. Values in bold indicate a mean RMSE � the mean RMSE for the 20-parameter TTO-only (T20) model at the

maximum sample size.
*n = 989 for TTO-only models; n = 992 for hybrid models.
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All analyses were performed in R version 4.0.0.19

Results

The data from the NL and US study included 9787 and
10,620 TTO values, with a mean disutility per health
state of 0.69 (SD 0.66) and 0.70 (0.70). The data col-
lected so far in Norway included 5110 TTO values, with
a mean disutility per health state of 0.59 (SD 0.60). The
distribution of values was similar between the 3 studies,
with slightly less clustering at disutility = 1 and a higher
proportion of valuations with a disutility less than 0.5 in
the NO data (Appendix Figure 1).

For all tested models, an increase in sample size has
the greatest effect on the mean RMSE on sample sizes up
to 500, with rapidly diminishing marginal improvement
for further increases in sample size. Across all sample
sizes and models, the mean RMSE varied from 0.178 to
0.077 for the NL data and from 0.209 to 0.084 for the US
data (Table 1). The NO data, resampled from an original
sample of only 510 respondents, had a max mean RMSE
of 0.174 for samples of 50 respondents and reached a
minimum mean RMSE of 0.099 for maximum sample
size (; 500).

For models including TTO data only, the 8-parameter
models outperformed the more complex 20-parameter
models for all sample sizes and all 3 studies in terms of
out-of-sample RMSE (Figure 1), achieving the same
expected prediction accuracy for samples of 350 to 500
respondents as for the standard 20-parameter model with
; 1000 respondents. For the 20-parameter model, add-
ing a random intercept also improved the mean predic-
tion accuracy for all sample sizes and studies (Figure 2).
For the NL data, there was no further improvement in
mean RMSE for the 8-parameter models when adding a
random intercept.

Using a hybrid model increased the prediction accu-
racy for all sample sizes compared with the correspond-
ing TTO-only models, with the greatest observed
difference for the 20-parameter models (Figure 1). For
the 8-parameter models with a random intercept, the
reduction in the mean RMSE from switching from a
TTO-only to a hybrid model was less than 0,01 for all
sample sizes.

The lowest sample size yielding similar mean RMSE
as the standard 20-parameter TTO-only model was
about 200 respondents using a hybrid 8-parameter model
based on the NL data and 300 respondents using any
hybrid models or 8-parameter random intercept TTO-
only models based on the US data. However, smaller
sample sizes do have much larger confidence intervals

and risk of significantly higher RMSE. It should also be
noted that where the upper confidence interval limit indi-
cates the extent of the error expected, the lower confi-
dence interval has no practical interpretation in this
context.

The differences in mean RMSE between the combined
model choices based on ; 1000 respondents were greater
than the difference between sample sizes of 500 versus
; 1000 using the same model. For instance, estimates
from the regression model indicate that using, for exam-
ple, an 8-parameter random intercept model, or a DCE
+ TTO hybrid model with a random intercept, could be
expected to achieve similar or better prediction accuracy
with a sample size of ; 500 compared with a 20-para-
meter TTO-only model fitted to a sample size of ; 1000.

The regression model estimating RMSE by change in
sample size and model specification indicated that dou-
bling the sample size decreased the RMSE by 0.012 (p \
0.01; Table 2). Switching to an 8-parameter model, add-
ing a random intercept, or using a DCE + TTO model
also decreased the RMSE by 0.007 (p \ 0.01), 0.003
(p \ 0.01), and 0.008 (p \ 0.01), respectively. The study
also had a significant effect on the RMSE.

The data included in the regression model comprised
the RMSE for all tested models for each resample
and sample size category (i.e., repeated measurements
per sample). Although the regression coefficients are
unbiased, the dependence between observations can lead
to the underestimation of standard errors and thereby
incorrect P values. Simulation modeling indicated that
independent samples would have yielded slightly larger
standard errors (0.1%–0.2%) and would not have chan-
ged the main findings.

Corresponding to the regression analyses, the main
Figures 1 and 2 are presented with the logarithm of sam-
ple size as Figures 3 and 4 in the Appendix.

Discussion

The major finding of this study was that prediction accu-
racy, expressed as the RMSE, decreased with increasing
sample size, and that different model specifications dis-
played substantial differences in prediction accuracy
across sample sizes. The multiplicative 8-parameter
model outperformed the more complex 20-parameter
model for all sample sizes based on TTO data only for all
3 studies. For all models, the improvement in expected
prediction accuracy tapered off quickly with increasing
sample size, and there was minimal gain in terms of aver-
age expected prediction accuracy from increases in sam-
ple size above 300 to 500 respondents.
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Figure 1 Root mean square error (RMSE) by sample size for variants of time tradeoff (TTO) data only and TTO + discrete
choice experiment hybrid models. RMSE calculated from the predicted values compared with censored mean observed values for
states included for direct valuation. The black dashed line indicates the mean RMSE for the 20-parameter model without a
random intercept at the maximum sample size.
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Figure 2 Root mean square error (RMSE) by sample size for variants of the 20-parameter additive and 8- parameter
multiplicative models. RMSE calculated from predicted values compared with the censored mean observed values for states
included for direct valuation. The black dashed line indicates the mean RMSE for the time tradeoff–only model without a
random intercept at max sample size.
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A comparison with the results for NL and US data
showed that the samples with a maximum sample size
from the NO data achieve similar prediction accuracy
using a 8-parameter multiplicative TTO model with ran-
dom intercept (mean RMSE = 0.100) or 8-parameter
multiplicative hybrid model with random intercept
(mean RMSE = 0.099). Results suggest that modeling
can compensate for the smaller sample size achieved by
the Norwegian study in terms of prediction accuracy.

The same cross-validation method was used to com-
pare models for estimating EQ-5D-5L health state values
in a previous study using data from Spain, Singapore,
and China.17 Our results support previous findings of the
simpler 8-parameter model outperforming the standard
20-parameter model and that adding a random intercept
at the level of the respondent may further improve pre-
dictive accuracy. This study indicates that these findings
also hold across all sample sizes tested (50–1000).

The effect of sample size and threshold for the mini-
mum number of respondents (300–500) is supported by
previous studies exploring the sample size and prediction

accuracy of EQ-5D-3L values.12,13 A minimum of 500
respondents resulted in stable estimates for health states
using a 20-parameter VAS main effects model using a
random intercept,15 given direct valuations for 80–120
states. Two recent studies have shown that smaller
designs with direct valuation of fewer states can suffice
for estimation of EQ-5D-5L health states without com-
promising prediction accuracy.20,21 If the current ‘‘core’’
EQVT valuation study protocol is to be considered suffi-
ciently good, our findings indicate that study costs could
be lowered by reducing sample size, without substantial
impact on prediction accuracy. Our results suggested
that the impact of increases in sample size beyond 300 to
500 respondents is minimal using the EQ-VT design and
the statistical model specifications currently employed.

It should be noted that the out-of-sample predictive
accuracy of even the best-performing models with a max-
imum sample size in our analyses was of a magnitude
similar to reported minimally important differences for
the EQ-5D-5L.22 This reflects the ability of these models
to reflect the nuances of the aggregated preferences for

Table 2 Results from the Linear Regression Model Estimating the Effect of Doubling Sample Size (Binary Logarithm [log2] of
Sample Size), using an 8-Parameter Model (8 Parameter), Adding a Random Intercept (Random), and including Discrete Choice
Experiment Responses in a Hybrid Model (Hybrid) on Root Mean Square Error (RMSE), Overall and Per Study

Dependent Variable: RMSE

Estimate (SE) Netherlands United States Norway

log2(sample size) 20.012***
(0.00002)

20.011***
(0.00003)

20.013***
(0.00004)

20.011***
(0.0001)

8 parameter 20.007***
(0.00005)

20.008***
(0.0001)

20.005***
(0.0001)

20.010***
(0.0001)

Random 20.003***
(0.00005)

20.001***
(0.0001)

20.006***
(0.0001)

20.002***
(0.0001)

Hybrid 20.008***
(0.00005)

20.009***
(0.0001)

20.007***
(0.0001)

20.007***
(0.0001)

Netherlands 0.204***
(0.0002)

Norway 0.219***
(0.0002)

United States 0.218***
(0.0002)

Constant
0.196***
(0.0003)

0.227***
(0.0003)

0.212***
(0.0004)

Observations 432,000 160,000 184,000 88,000
R2 0.975 0.532 0.440 0.421
Adjusted R2 0.975 0.532 0.440 0.421
Residual standard error 0.016

(df = 431,993)
F statistic 2,380,826.000***

(df = 7; 431,993)

*P \ 0.1; **P \ 0.05; ***P \ 0.01.
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the EQ-5D-5L health states and is only affected by the
sample size to a limited extent. Although our results sug-
gest that sample sizes could be reduced at limited cost to
prediction accuracy, the similar magnitude of expected
error to minimally important differences suggests that
there is likely room for improvement both in terms of
state design (e.g., by increasing the number of health
states valued)13 and to the valuation methods and statis-
tical models used to reflect population preferences.

The model specifications tested in this study have all
been used to estimate national value sets for the EQ-5D-
5L. The candidate models are, however, not exhaustive,
and other designs and models have been suggested and
used to estimate health states. Approaches such as add-
ing state-level random effects have been shown to
improve prediction accuracy,23,24 but such approaches
have yet to be explored across sample sizes.

The studies included in the present analyses were all
national data collections compliant with the EQ-VT pro-
tocol. Although adhering to different versions of the pro-
tocols, compliance with these protocols ensures that
interviews were completed in a comparable manner, all
using face-to-face personal interviews using digital soft-
ware developed for the valuation of the EQ-5D-5L. All 3
studies used TTO and DCE and trained their inter-
viewers as recommended by EuroQol. Newer versions of
the protocols, as used by the US and NO study, included
an extended introduction to the TTO task, with practice
states and the adaptive lead-time TTO example, and
more data quality controls to identify interviewer
effects. However, the greater focus on data quality has
not resulted in a higher prediction accuracy when mod-
eling health state values, with consistently higher pre-
diction errors from models based on the US and NO
data compared with the NL data. The differences in
the level of prediction error in these studies can be a
result of differing response patterns and use of the
scale; for instance, with more detailed introduction of
the lead-time part of the task, respondents may be
more inclined to use a larger portion of the total scale
when valuing health states, resulting in greater variance
in observed values.

Limitations

There is no defined threshold for an acceptable predic-
tion accuracy of models estimating health state values.
The chosen threshold in this study, the average predicted
accuracy achieved with the ‘‘standard’’ 20-parameter
model based on TTO data only, was used to compare
the effect of each additional alternative modeling

specification across sample size and is not suggested to
be a standard of acceptable prediction accuracy.

We compared models and model specifications by
mean RMSE across samples per sample size. For smaller
sample sizes, the RMSE per sample for all models natu-
rally varied significantly, and the uncertainty and likeli-
hood of a model achieving a much higher RMSE
increased with smaller samples. We compared the pre-
dicted and observed values without regard for standard
errors or parameter significance. In the final estimation
of values, models are often assessed by the number of
significant parameters and underlying assumptions of
utility, such as monotonicity (i.e., that increases in sever-
ity levels equate to decreases in utility). When including
health state values in cost-effectiveness analyses, the
uncertainty of the predicted values and standard errors
of the estimates are also relevant, both of which will
naturally increase with decreasing sample size. These
measures were, however, not assessed in this study.

Although the data included in the analyses were
sampled from reputable and recent EQ-5D-5L studies,
complying with the EQ-VT protocol using the standard
design (direct valuation of 86 states), they were also cho-
sen by convenience and with populations that were con-
sidered comparable with the Norwegian population.
Given that different countries and cultures have shown
different response patterns, findings from this study may
not transfer to all settings.

Respondent characteristics affect the values given dur-
ing TTO, and as such, the validity of the estimated value
sets depends on whether the characteristics of the respon-
dents in the sample are representative of the population
they seek to represent.25,26 The resampling of data to dif-
fering sample sizes in this study did not take any respon-
dent characteristics into account, and we cannot rule out
that differences between study populations also affected
the results. Despite this, the RMSE scores per study were
similar, and the effect of each model specification on pre-
diction accuracy was comparable across all 3 studies.
Given that respondent characteristics can have a signifi-
cant effect on health state values, different compositions
of such characteristics in the different samples will add
to the possible error and imprecision of predictions, with
the smaller sample sizes naturally being most susceptible
to more extreme combinations.

Implications of results

The implications of results of this study are 2-fold. For
the Norwegian valuation study, for which data collection
was stopped in March 2020 after the completion of only

10 MDM Policy & Practice 7(1)



542 interviews, the results of this study could support the
estimation of values based on the data already collected.
Given the context of the postponement, the comparabil-
ity to previously collected data may be in question if data
collection is resumed regardless. Following a prolonged
interruption to data collection, new interviewers will need
to be recruited and trained. Previously unexplored issues
may also need to be addressed, such as potential shifts in
population preferences due to the COVID-19 pandemic
and changes in the health political climate.

Issues with the political legitimacy of values may,
however, still be debatable. Geographical representation
of all regions of Norway was a priority in the sampling
strategy. Because of the sudden postponement, data were
collected in only 2 of 4 regions. Although there is little
prior knowledge suggesting that region would have a sig-
nificant effect on health state preferences, cultural differ-
ences have been associated with health state values.27

The use of values generated from preferences collected
only in southern, and more urban and densely popu-
lated, regions of Norway may not be deemed politically
acceptable as a national value set. Thus, while estimating
values from a smaller sample size may be defensible in
terms of the average expected prediction accuracy, mod-
eling cannot properly adjust for inadequate representa-
tiveness in the achieved sample.

Conclusions

Sample size will always be a tradeoff between precision
and costs. The more respondents, the greater the preci-
sion of estimates but also the greater the costs. Results
from this study suggest that the expected gain in predic-
tion accuracy from increasing sample sizes beyond 300
to 500 respondents is minimal and that the choice of
model can compensate for a smaller sample size. Beyond
this number of respondents, sample size considerations
in the planning of national valuation studies may be bet-
ter informed by considerations of legitimacy and repre-
sentativeness than by the technical prediction accuracy
achievable.
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