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Abstract
The participants in randomized trials and other studies used for causal inference are often not representative of the populations 
seen by clinical decision-makers. To account for differences between populations, researchers may consider standardizing 
results to a target population. We discuss several different types of homogeneity conditions that are relevant for standardiza-
tion: Homogeneity of effect measures, homogeneity of counterfactual outcome state transition parameters, and homogeneity 
of counterfactual distributions. Each of these conditions can be used to show that a particular standardization procedure will 
result in an unbiased estimate of the effect in the target population, given assumptions about the relevant scientific context. 
We compare and contrast the homogeneity conditions, in particular their implications for selection of covariates for stand-
ardization and their implications for how to compute the standardized causal effect in the target population. While some of 
the recently developed counterfactual approaches to generalizability rely upon homogeneity conditions that avoid many of 
the problems associated with traditional approaches, they often require adjustment for a large (and possibly unfeasible) set 
of covariates.
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Background

The participants in randomized trials and other studies used 
for causal inference are often not representative of the popu-
lations seen by clinical decision-makers [1]. Several statisti-
cal methods have been proposed to standardize estimates of 

a causal effect to the distribution of baseline covariates in a 
clinically relevant target population, in order to account for 
differences between populations. However, less attention has 
been given to how an investigator should reason about which 
covariates need to be standardized over. The choice of vari-
ables is important not only for the standardization procedure, 
but also for determining which personal characteristics of 
the participants must be considered when reasoning quali-
tatively about how representative a study is, relative to the 
intended target population. In this paper, we discuss different 
ways to select such covariates, and show that this problem is 
closely related to how one chooses to operationalize effect 
homogeneity between populations.

For all examples, we will consider the effect of a binary 
treatment A (for example, a pharmaceutical; 1 = treated, 0 
= not treated) on a binary outcome Y (for example, a side 
effect; 1 = occurred, 0 = did not occur). Counterfactuals will 
be denoted using superscripts. We will let V denote a set of 
baseline covariates which are potential effect modifiers (for 
example: gender, nationality, etc). In some examples, we will 
consider an individual binary potential effect modifier (an 
element of V), which we will call W. We will consider two 
separate populations: The study population ( P = s ), in which 
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we have valid evidence for the causal effect of the treatment; 
and the target population ( P = t ) in which we either have 
no data on the exposure or outcomes variables, or only have 
observational data and are unable to rule out confounding. 
We will consider membership in the study population to 
be defined at baseline, and focus on issues that arise due to 
non-random selection into the study. We note that while it 
is certainly possible that there is selection out of the study 
post-baseline, this is better considered as a form of selec-
tion bias [2, 3] related to internal as opposed to external 
validity. We will focus primarily on binary outcomes, but 
note that most methods and concepts discussed in this paper, 
with the exception of counterfactual outcome state transition 
(COST) parameters, extend readily to continuous and time-
to-event outcomes. We consider several measures of causal 
effect including the risk difference (RD), the risk ratio (RR), 
the survival ratio (SR) (which can be understood as the RR 
where the coding of the outcome variable is reversed), and 
the odds ratio (OR). These effect measures may be defined 
in a specific population or subgroup, which we denote using 
subscript as needed. For instance, RD

t
 is the RD in popula-

tion t.
Epidemiologists and clinical scientists have tradition-

ally defined effect homogeneity in terms of a specific effect 
measure. For example, one may consider effect homoge-
neity as the absence of effect modification on the RR, RD 
or OR scale. These definitions of effect homogeneity are 
associated with several established conceptual and practical 
shortcomings, including lack of biological interpretation, 
baseline risk dependence, zero-bounds, prediction outside 
the range of valid probabilities, non-collapsibility and asym-
metry [4]. There have also been several recent methodologi-
cal developments in defining effect homogeneity based on 
counterfactual distributions rather than specific measures of 
effect [5]. These approaches consider the outcome under 
the active treatment separately from the outcome under the 
control condition. VanderWeele described this as “effect 
modification in distribution” [6], to contrast with the tra-
ditional approach, which was termed “effect modification 
in measure”.

Both these types of effect homogeneity may occur 
between two subgroups which are both in the study pop-
ulation (for example: between men in the study popula-
tion and women in the study population), or between one 
subgroup which is in the study population and another 
subgroup which is in the target population (for example: 
between men in the study population and men in the target 
population). Homogeneity between two groups that are both 
in the study population is often invoked in meta-analysis 
and model specification. Homogeneity between one group 
that is in the study population and another that is in the tar-
get population is necessary in settings where the goal is to 
extrapolate the findings to settings outside of the observed 

data (“generalizability” or “transportability”). Conceptually, 
these types of homogeneity are closely related, and differ 
primarily in that the former is testable from the observed 
data, whereas the latter is not.

The paper is organized as follows. First, we consider 
approaches to generalizability that are based on conditional 
homogeneity of standard effect measures (such as RR and 
RD) between the study population and the target population. 
We then describe the recently introduced COST parameters 
[4], and show how this framework can be used to overcome 
some of the shortcomings of traditional effect measures. 
Finally, we review approaches to generalizability based on 
conditional homogeneity of individual counterfactual dis-
tributions, with a particular emphasis on methods based on 
inverse probability weighted estimators, and methods based 
on causal diagrams. As we introduce each approach, we 
repeatedly refer to two tables throughout the text: Table 1 
shows an overview of different ways an investigator can 
operationalize effect homogeneity; Table 2 shows five dif-
ferent approaches to standardization which rely on different 
homogeneity conditions. Proofs of the standardization for-
mulas in Table 2 are shown in “Appendix 1”.

Effect homogeneity in measure

Effect homogeneity in measure occurs whenever the effect 
in one population (or subgroup) is equal to the effect in 
another population (or subgroup) in terms of a particular 
effect measure, such as the RD or the RR. For example, if 
the RD in the study population (i.e. RD

s
 ) is equal to RD in 

the target population (i.e. RD
t
 ) we say that there is effect 

homogeneity on the RD scale.
Many commonly used methods in epidemiology rely 

on assumptions that are equivalent to conditional effect 

Table 1   Definitions of conditional effect homogeneity between study 
population and target population

Homogeneity condition Definition

Effect homogeneity in measure
   On the risk difference scale RD

s,v = RD
t,v

   On the risk ratio scale RR
s,v = RR

t,v

   On the survival ratio scale SR
s,v = SR

t,v

   On the odds ratio scale OR
s,v = OR

t,v

Homogeneity of COST parameters
   For introducing treatment
   For removing treatment

Effect homogeneity in distribution
   S-ignorability
   S-admissibility
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homogeneity in measure. For example, the Mantel-Haen-
szel estimator only has a clear population-level interpreta-
tion if the conditional OR is equal between all strata of the 
covariates [7] (i.e if there is effect homogeneity in measure 
between groups in the study population). Epidemiologists 
also often rely on effect homogeneity in measure when they 
omit interaction terms from regression models. For example, 
suppose we fit the the following logistic regression model in 
the study population:

In this model, by omitting a product term �3 × A ×W  , we 
encode the assumption that the OR of A on Y in the group 
W = 1 is equal to the OR in W = 0 , or in other words, that 
there is effect homogeneity on the OR scale between two 
subgroups of the study population: OR

s,w=1 = OR
s,w=0.

If we are willing to assume homogeneity of an effect 
measure between two groups in the study population in order 
to justify the absence of a product term, we may be tempted 
to ask if we could use a similar homogeneity assumption 
between one group that is in the study population, and 
another group that is outside of the study population (e.g. 
OR

s,v = OR
t,v for all values of v) in order to justify extrapo-

lation of an effect to the target population. The overall idea 
behind this approach is to identify a set of measured covari-
ates V such that, within levels of the covariates, the magni-
tude of the effect (when measured on that particular scale) 
is equal between the populations. In this paper, if such a 
homogeneity condition holds on any scale, we say that there 
is conditional effect homogeneity on that scale, and that V 
is a sufficient set of effect measure modifiers for the trans-
portation from the study population to the target population.

To illustrate, it is possible that the RR for adverse effects 
of Codeine differs between Norway and Japan because the 
two countries have different distributions of variants of 
CYP2D6 [8], a gene associated with drug metabolism, but 
that on average, the RR associated with the use of the drug is 
equal between Norwegians and Japanese who have the same 
variant of the gene. If that is the case, then we have effect 
measure homogeneity conditional on CYP2D6 variant, and 
CYP2D6 is a sufficient set of effect modifiers on the RR 
scale. Of note, a sufficient set of effect measure modifiers 
may not exist among the measured covariates.

An example of the utility of such homogeneity condi-
tions occurs when an investigator attempts to account for 
heterogeneity between populations by standardizing effect 
estimates to the distribution of covariates V in the target 
population. The first two formulas in Table 2 can be used to 
standardize estimates of a causal effect to a target popula-
tion, if one has measured a sufficient set of effect modifiers. 
Approach one, which is a weighted average of the effect 
measure, is valid for collapsible effect measures [9], whereas 

logit Pr(Y = 1|A,W,P = s) = �0 + �1A + �2W.

approach two, which is a weighted average of the predicted 
stratum-specific average outcome under treatment, is valid 
for any effect measure.

A large literature exists on statistical tests for detecting 
and quantifying any effect heterogeneity in measure between 
groups in the observed data (for example, between groups 
in the study population, or between multiple study popula-
tions). Examples of this include Cochran’s Q test [10] and 
the I2 statistic [11]. While homogeneity of an effect measure 
is to some extent an empirical question [12–14], convincing 
arguments for stability of the effect measure outside of the 
observed data will often require additional, explicit assump-
tions about the data generating mechanism. Unfortunately, 
few examples of data generating mechanisms which result in 
stability of an effect measure exist in the published literature, 
and in many settings, finding convincing mechanisms may 
not be feasible. However, in the next subsection, we discuss 
the COST parameters framework to demonstrate that at least 
in some settings, such mechanisms can be found.

COST parameters

COST parameters are a new class of effect parameters that 
were proposed in order to formalize a counterfactual causal 
model that may result in effect homogeneity in terms of 
standard observable measures of effect. The COST param-
eters for introducing treatment are defined as follows:

The COST parameters can be understood as the proportion 
of cases and non-cases that would not have had the opposite 
outcome if their exposure status had been altered. In other 
words, these are the probabilities that the outcome does not 
“switch” in response to treatment (see Fig. 1). In Huitfeldt 
et al. [4], it was shown that if certain cofactors that deter-
mine treatment effect have equal prevalence between two 
groups, and if the interaction between these cofactors and 
treatment A operates according to certain simple biological 
principles, then the COST parameters for introducing treat-
ment are equal between populations, which can mathemati-
cally be written as . If the cofactors instead 
interact with treatment according to a different biological 
mechanism, this would instead result in homogeneity of 
COST parameters for removing treatment (
).

Thus, by using the condition  to opera-
tionalize effect homogeneity, we reframe homogeneity of 
the “magnitude of effect” as a matter of equal distribution 
of the cofactors that determine whether individuals respond 
to treatment. If the prevalences of those cofactors differ 
between populations, such effect equality may hold within 

G = Pr(Ya=1 = 1 ∣ Ya=0 = 1)

H = Pr(Ya=1 = 0 ∣ Ya=0 = 0)
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levels of covariates V, in which case, there is conditional 
equality of the effect of introducing (or removing) treatment. 
Conditioning on V is then seen as an attempt to account for 
those variables that are predictors of the prevalence of the 
potentially unmeasured background cofactors which deter-
mine whether an individual “switches outcome” in response 
to treatment.

Much of the intuition behind traditional approaches to 
choice of effect modifiers translates readily to the COST 
parameter framework, but with the added advantage that the 
line of reasoning is specific to the relevant effect measure. 
To illustrate, suppose we are interested in generalizing find-
ings about the adverse effects of Codeine. The goal is to 
account for all cofactors that determine whether a patient 
will respond to treatment, either by conditioning on those 
cofactors directly, or by finding observable markers for their 
prevalence. For example, if the CYP2D6 variant partly 
determines whether patients respond to Codeine, we could 
either condition on the gene, or condition on ethnicity as a 
marker for its prevalence (that is, include either the genetic 
variant or ethnicity in the set V). Further, pre-study drug 
use may be an observable marker for the prevalence of sus-
ceptibility, due to depletion of susceptibles [15]. We will 
therefore measure and control for ethnicity and pre-study 
drug use, as well as any other covariates that are relevant 
according to similar criteria.

COST parameters are generally not identified from the 
data without strong monotonicity assumptions. If the treat-
ment has a positive monotonic effect (meaning that the treat-
ment does not prevent anyone from having the outcome), 
and if the COST parameters G and H are equal between 
the study population and the target population conditional 
on covariates V, there will be homogeneity on the SR scale 
for exposures which increase the incidence of the outcome 
(SR becomes equivalent to H, whereas G is trivially 1). 
Analogous discussion applies when considering a situation 
in which the treatment of interest is negatively monotonic 

(protective), in which case RR becomes equivalent to G, and 
H is trivially 1.

If treatment has monotonic effects, the COST parameters 
can therefore be used as a “bridge” between the biological 
knowledge on the one side, and homogeneity of observable 
measures of effects on the other side, thereby allowing the 
investigator to standardize effect measure from a study to a 
target population using either approach 1 or approach 2 from 
Table 2. The necessary weights are discussed elsewhere [9]. 
The bias which is associated with the use of COST param-
eters in the presence of non-monotonicity is small either if 
non-monotonicity is negligible, or if the baseline risks are 
similar between the target population and the study popu-
lation. If non-monotonicity is not negligible and baseline 
risks differ between the study population and the target pop-
ulation, the bias associated with COST parameters may be 
substantial; in such settings, the COST parameter approach 
should not be used.

The COST parameter approach often results in a recom-
mendation to consider effect homogeneity in terms of the RR 
scale for exposures that reduce incidence, and in terms of 
the SR scale for exposures that increase the incidence, while 
keeping the coding of the exposure such that the “natural 
state” of exposure has value 0 and the intervention has value 
1. Variations of this suggestion have arisen independently 
a number of times in the previous literature [16–18]. This 
approach is also consistent with the Cochrane Handbook 
[19], which states that “When the study aims to reduce the 
incidence of an adverse outcome there is empirical evidence 
that risk ratios of the adverse outcome are more consistent 
than risk ratios of the non-event” (the handbook does not 
take a position on what effect measure to use when the study 
attempts to estimate the increase in incidence of an adverse 
outcome). When the disease is rare, this approach is closely 
approximated by the earlier suggestion to consider “relative 
benefits and absolute harms” of interventions [20].

Finally, we note an important limitation of COST param-
eters, which is that they have so far only been defined for 
binary outcomes. Extensions to continuous and time-to-
event outcomes have not yet been established.

Effect homogeneity in distribution

An alternative approach is to operationalize effect homo-
geneity in terms of the individual counterfactual distribu-
tions under treatment and no treatment. Effect homogeneity 
in distribution between the study population and the target 
population holds whenever the following two conditions 
hold simultaneously: (1) If everyone in both populations 
were untreated, you would observe the same distribution of 
outcomes in the two populations ( ) and (2) if eve-
ryone in both populations were treated, you would observe 

Fig. 1   Counterfactual outcome state transition parameters associated 
with introduction of treatment. 1-G is the probability that someone 
who would otherwise die survives if treated. 1-H is the probability 
that someone who would otherwise survive dies if treated
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the same distribution of outcomes in the two populations 
( ). This condition was referred to as “S-ignora-
bility” by Bareinboim and Pearl, and as “exchangeability 
between populations” by Lesko et al. [21]. VanderWeele 
[6] showed that effect homogeneity in distribution implies 
homogeneity of all standard effect measures; effect homoge-
neity in distribution is therefore a stronger assumption than 
effect homogeneity in measure on standard scales.

In order to illustrate the difference between effect homo-
geneity in distribution and effect homogeneity in measure, 
we again consider the logistic regression model discussed 
in the previous section:

This model is restricted to the study population, and omits 
the product term �3 × A ×W  . We showed that this model 
is justified under effect homogeneity in measure on the OR 
scale between groups in the study population. We note that 
this model could also be justified under effect homogeneity 
in distribution between the same two groups. However, this 
modeling approach has an immediate implication: If effect 
homogeneity in distribution holds and the effect of A on Y is 
unconfounded conditional on W and P = s , then �2 must be 
equal to zero (see “Appendix 2”). This makes the model sub-
ject to an empirical test: if e.g. the Wald test rejects �2 = 0 
the model is misspecified. While we do not recommend this 
as a test of the homogeneity assumption, we believe this 
example illustrates that effect homogeneity in distribution 
is a very strong concept, and that investigators often have to 
rely on a weaker form of effect homogeneity.

As with effect homogeneity in measure, effect homogene-
ity in distribution may hold within levels of a set of covari-
ates V. If effect homogeneity in distribution between the 
study population and the target population holds conditional 
on V, one can use a third standardization formula (approach 
3 in Table 2), based on separately standardizing the condi-
tional risk under treatment and the conditional risk under no 
treatment from the study population, to the distribution of V 
in the target population.

Although methods based on assuming conditional homo-
geneity of the distribution of a counterfactual variable are 
mathematically elegant and avoid most of the limitations 
of defining homogeneity with respect to effect measures, 
they require strong assumptions which go well beyond the 
conditions that epidemiologists and clinical scientists have 
traditionally considered necessary for generalizability. Spe-
cifically, whereas approaches that are based on conditional 
effect homogeneity in measure aim only to control for those 
covariates that are associated with the magnitude of the 
effect, methods that rely on conditional effect homogene-
ity in distribution are valid only if they account for every 
cause of the outcome that differs between the study popula-
tion and the target population. In other words, approaches 

logit Pr(Y = 1|A,W,P = s) = �0 + �1A + �2W

based on conditional effect homogeneity in distribution may 
lead to biased transportability estimates in the presence of 
unmeasured causes of the outcome whose distributions differ 
between the study population and the target population. An 
example of the implications of such bias was shown recently 
in the closely related context of agent-based models used for 
extrapolation [22].

Effect homogeneity in distribution may occasionally be a 
reasonable assumption if the imbalance in covariates arises 
due to a fully understood non-random sampling mechanism, 
for example, if the investigators enroll participants from an 
enumerated source population, with selection probability 
determined by measured baseline covariates. However, out-
side of such stylized examples, it is more challenging to see 
good justifications for this type of homogeneity assumption.

We note that approaches based upon effect homogene-
ity in distribution do not make use of possible information 
contained in the relationship between what happens if the 
pharmaceutical is taken, and what happens if the pharma-
ceutical is not taken. To illustrate, consider a situation where 
we have conducted a randomized controlled trial on the 
effect of homeopathy versus no treatment on the incidence 
of cardiovascular disease, and concluded that the effect in 
the study population is null. Suppose we are interested in 
predicting the effect in a different target population, but we 
believe there may be unmeasured causes of cardiovascular 
disease that differ between the study population and the tar-
get population. In such situations, if we operationalize effect 
homogeneity using a notion of effect homogeneity in distri-
bution, we are likely forced to conclude that we are unable 
to make predictions for the target population. In contrast, 
investigators using an approach based on effect homogene-
ity in measure could potentially be able to clarify plausible 
conditions under which the null findings can be extrapolated 
to the target population.

Weighted estimators for generalizability 
and transportability

One particular implementation of generalization based on 
effect homogeneity in distribution originated with work 
by Stuart and Cole [23, 24]. These methods extend inverse 
probability based estimators [25], which play a key role in 
previous work on causal modelling [26, 27] to the setting of 
external validity. The validity conditions of these methods 
are equal to those of standardization based methods dis-
cussed above.

Users of these methods often distinguish between “trans-
portability” (where the analytic goal is to extrapolate the 
findings to a target population that does not include those in 
the study population, i.e. a target population that looks like 
those who were eligible for, but were not sampled in the 
study), and “generalizability” (where the target population 
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also includes those in the study population). The methods 
used for each objective differs in that inverse probability of 
selection weights [21] (approach 4 in Table 2) are used for 
generalizability, whereas inverse odds of selection weights 
[28] (approach 5 in Table 2) are used for transportability.

Stated slightly differently, the choice between weights is 
determined by whether the target population is similar to the 
entire source population from which the study participants 
were selected, or similar to the subset of the source popula-
tion that was not selected for the study. We believe the first 
type of target population is more common; in such settings, 
inverse probability of selection weights should be used. 
Inverse odds weights may be appropriate if the study partici-
pants are sampled for a pilot study to determine whether the 
intervention will be implemented in those who were eligible 
to be selected, but weren’t.

Inverse probability weighted methods have been applied 
to generalize the results of trials on the effect of HIV medi-
cation [29] and treatments for substance use disorder [30]. 
Lesko et al. provided a full description of how these meth-
ods can be used in practice [21]. Buchanan et al. [31] pro-
vided results about the statistical properties of inverse prob-
ability weighted estimators for external validity. Dahabreh 
et al. [32] discussed estimators based on augmented inverse 
probability weights, which are doubly roubst. Nguyen 
et al. [33] showed how to conduct sensitivity analyses on 
deviations from conditional effect homogeneity. Breskin 
et al. [34] provided results on bounds, i.e. intervals that show 
how wrong the point estimates can be in either direction if 
the assumption of conditional effect homogeneity in distri-
bution is not fully met, in the presence and/or absence of 
confounding. If one suspects both confounding and lack of 
effect homogeneity in distribution, these bounds can be used 
to reason about target validity [35], that is, how much bias 
there may be in the estimates for the target population as a 
result of deviations both from internal and external validity.

We note that for collapsible effect measures, re-weight-
ing methods based upon conditional effect homogeneity in 
measure may be feasible, but to the best of our knowledge, 
the theory for such methods has not yet been fully developed.

Causal diagrams for transportability

One example of a class of data generating mechanisms that 
guarantees effect homogeneity in distribution (and there-
fore also effect homogeneity in measure for all standard 
effect measures) was provided by Bareinboim and Pearl 
[36–39], based on causal diagrams [40]. These diagrams 
are, to our knowledge, the first published formal framework 
for reasoning about which variables to adjust for when using 
approaches based on effect homogeneity in distribution. In 
particular, they use a generalization of effect homogeneity in 
distribution that allows the covariates that are adjusted for, 

and membership in the populations that the counterfactual 
distributions are equal between, to be downstream conse-
quences of treatment.

A selection diagram is constructed as follows: First, the 
investigator must provide a causal directed acyclic graph 
(DAG) that is valid both for the study population and for 
the target population. For this to be possible, the variables 
must be in the same temporal order between the two popu-
lations. If that requirement is met, a DAG which is valid 
for both populations can be constructed by including every 
node and edge from the causal DAG in each population. 
After a shared causal DAG has been constructed, one must 
also add (1) selection variable nodes (P) associated with all 
variables whose assignment mechanism differs between the 
study population and the target population, and all variables 
that depend upon background causes whose distribution dif-
fers between the study population and the target population 
(2) all paths between P and Y that one is not able to rule out 
based on the temporal structure or expert knowledge. Gener-
ally, such paths will exist whenever there are causes of the 
outcome that differ between the populations. Note that when 
the goal is to account for “man-made” differences between 
the study population and the target population, i.e. those 
differences which arise due to how the sample was selected, 
P is a single binary “sink node” representing membership in 
the study population, which has the same interpretation as 
the P variable that we have considered so far in this paper. 
An example of a causal diagram used for transportability is 
shown in Fig. 2.

Once a selection diagram has been constructed, one can 
check for transportability of the results by determining 
whether Y is d-separated from P, given some set of meas-
ured covariates V, in a manipulated graph where all arrows 
going into A have been deleted. If such d-separation holds in 
the manipulated selection diagram, there will exist a trans-
port formula which identifies the causal effect in the target 
population based on a combination of observed quantities 
in the study population and observed quantities in the target 
population. If V consists only of baseline covariates, then 
the transport formula is equal to the standardization formula 
discussed in Sect. 3.1.

Fig. 2   In this causal diagram, findings from the study population may 
be transported to the target population if we have measured sufficient 
covariates V to block all paths between the selection node P, and the 
outcome Y. We have chosen to represent the selection node P with an 
octagon
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Note that the independence relation that is queried by this 
d-separation approach can be written algebraically as

which Bareinboim and Pearl referred to as “S-admissibil-
ity”. When P and V are pre-treatment variables, Pa = P and 
V
a = V  so the independence relation can be simplified as

(or “S-ignorability”). This simplified version is identical to 
the previously discussed operationalization of conditional 
effect homogeneity in distribution, which illustrates the 
equivalence between the graphical approach and approaches 
based on standardization or inverse probability weights 
when V and P are pre-treatment.

Thus, while the graphical approach and the inverse prob-
ability weighted approach will result in very similar analyses 
if P and V are pre-treatment (the analyses will be non-para-
metrically equivalent but may differ in practice as they may 
be associated with different modelling assumptions on the 
joint distribution of variables), the graphical model allows a 
potentially useful generalization to settings where it is nec-
essary to adjust for post-baseline covariates. In practice, we 
are not aware of any published examples where a convincing 
argument was made that a causal effect is transportable only 
by measuring and adjusting for covariates that were causally 
affected by treatment.

Other authors have constructed causal diagrams for 
generalizability in different ways. In particular, Dahabreh 
et al. [41] use Single World Intervention Graphs (SWIGs) 
to examine conditions under which causal parameters can 
be generalized from a randomized trial to all trial eligible 
individuals.

Conclusions

Causal effects may differ between populations, and investiga-
tors will often have to standardize their estimates over a set 
of effect modifiers in order to make the results applicable to 
clinically relevant populations. Before it is possible to begin 
reasoning about which covariates must be standardized over, 
it is necessary to provide a definition of effect homogeneity. 
Several different approaches have been proposed.

If effect homogeneity is to be operationalized in terms 
of stability of a measure of effect, the analytic objective is 
to account for all those covariates that are associated with 
the magnitude of the effect on the chosen scale. COST 
parameters have been developed to formalize conditions 
that result in homogeneity of observable effect measures. 
This approach requires that the investigators have accounted 

for all variables that predict treatment response, that only 
baseline covariates are necessary for this purpose, and that 
the effect of treatment is monotonic. When these conditions 
are met, using COST parameters allows investigators to 
retain much of the underlying intuition behind traditional 
approaches to effect modification. Future work may be nec-
essary to develop new classes of causal models that result 
in homogeneity of other effect measures, including effect 
measures relevant to time-to-event data.

If instead effect homogeneity is to be operationalized 
in terms of conditional homogeneity of the distributions 
of counterfactual variables (such as in methods based on 
inverse probability weights and causal diagrams), the ana-
lytic objective shifts to accounting for all covariates that 
are associated with the counterfactual outcome and whose 
distribution differs between populations. This will generally 
require a much larger set of covariates. Controlling for all 
the necessary covariates will sometimes be feasible in situa-
tions where the goal is to recover the effect estimates for the 
full source population in the presence of a fully understood 
non-random selection mechanism, but may be less realistic 
in other settings. If the required conditions are met, methods 
based on effect homogeneity in distribution have consider-
able advantages, as they do not rely on parametric assump-
tions or monotonicity conditions.

All approaches have considerable limitations, and the 
choice between them will generally depend on expert beliefs 
about which assumptions are most likely to be approximately 
true in the specific scientific context.
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Appendix 1

Proofs of identifying expressions from Table 2. We note that 
these proofs are not new to this paper, and are included here 
only for completeness:
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Approach 1

Approach 2

Approach 3

Approach 4

We are here assuming that Y is a binary variable, the proof 
generalizes readily to settings with continuous or time-to-
event outcomes. In order to simplify the logic, we will fur-
ther assume that the same set of baseline covariates V is 
sufficient to control both for confounding for A, and for dif-
ferences between populations. In other words, we will 
assume conditional exchangeability in the study population 

(1)
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�
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∑
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[
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[
Pr(Ya=1 = 1|V = v,P = t) × Pr(V = v|P = t)

]

= Pr(Ya=1 = 1|P = t)

(3)

( ) and conditional effect homo-
geneity in distribution ( ). Before we begin, 

it is useful to note that Pr(A=a,V=v,P=s)

Pr(A=a|P=s,V=v)×Pr(P=s|V=v) = Pr(V = v) . 

This follows from sequential application of the definition of 
conditional probability.

(4)
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Approach 5

The proof of approach 5 is closely related to that for 
approach 4. Westreich et al. [28] provide a full proof in the 
appendix.

Appendix 2

Here, we prove that if there is effect homogeneity in distribu-
tion between the groups W = 1 and W = 0 , then the param-
eter �2 must be equal to zero in the regression model

Note here that we are discussing a regression model fit 
within the study population, and where the homogene-
ity assumption is between groups of baseline covariate W. 
In contrast to the rest of the paper, we are therefore using 
the homogeneity assumption  rather 
than .

Additionally, we will make the following assumptions:

By consistency and exchangeability, the model can be 
rewritten as a structural model:

If W = 0 , we have:

If W = 1 , we have:

By the assumption of effect homogeneity in distribution, we 
can set these equal:

Solving this for �2 we get �2 = 0.
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