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A simple stochastic model 
describing the evolution 
of genomic GC content in asexually 
reproducing organisms
Jon Bohlin

A genome’s nucleotide composition can usually be summarized with (G)uanine + (C)ytosine (GC) or (A)
denine + (T)hymine (AT) frequencies as GC% = 100% − AT%. Genomic AT/GC content has been linked 
to environment and selective processes in asexually reproducing organisms. A model is presented 
relating the evolution of genomic GC content over time to AT → GC and GC → AT mutation rates. 
By employing Itô calculus it is shown that if mutation rates are subject to random perturbations, 
that can vary over time, several implications follow. In particular, an extra Brownian motion term 
appears influencing genomic nucleotide variability; the greater the random perturbations the more 
genomic nucleotide variability. This can have several interpretations depending on the context. 
For instance, reducing the influence of the random perturbations on the AT/GC mutation rates and 
thus genomic nucleotide variability, to limit fitness decreasing and deleterious mutations, will likely 
suggest channeling of resources. On the other hand, increased genomic nucleotide diversity may be 
beneficial in variable environments. In asexually reproducing organisms, the Brownian motion term 
can be considered to be inversely reflective of the selective pressures an organism is subjected to at 
the molecular level. The presented model is a generalization of a previous model, limited to microbial 
symbionts, to all asexually reproducing, non-recombining organisms. Last, a connection between 
the presented model and the classical Luria–Delbrück mutation model is presented in an Itô calculus 
setting.

The hereditary material of living organisms consist of double stranded deoxyribonucleic acid (DNA)  molecules1. 
The building blocks of the DNA molecule are the nucleotides Adenine (A), Guanine (G), Cytosine (C) and Thy-
mine (T)1. Across each strand Gs pair with Cs and Ts with As  only1. Within each strand the different nucleotides 
are stacked in no specific order connected via a sugar  backbone1. Virus can have genomes consisting of single or 
double stranded DNA or ribonucleic acid (RNA)2. RNA is similar to DNA but is more often single stranded and 
T is substituted for Uracil (U)3. Genomes consisting of double stranded DNA have approximately as many As as 
Ts and Gs as Cs on each  strand4. These relations were first observed by Erwin  Chargaff4 and are therefore referred 
to as one of Chargaff ’s parity laws. Base composition in genomes with double stranded DNA can therefore be 
analyzed using either AT- or GC content as GC% = 100% − AT%.

Base-pairing across the two DNA strands consists of three hydrogen bonds for G and C and two for A and 
 T1. More energy is in general required to stack and melt G and C bindings as compared to A and  T5. Methylation 
of C, by the addition of a methyl group, often results in deamination of C transforming it to  T6. Deamination of 
methylated Cs is therefore implicated in an AT mutational bias observed for bacteria and archaea (prokaryotes)7. 
Relaxation of selective pressures are hypothesized to increase AT content in microbial genomes due to the failure 
of repair enzymes to remove methylated  cytosines8. Indeed, both modelling and empirical investigations points 
to an approximately 2:1 relationship of respectively GC → AT and AT → GC mutation rates in  prokaryotes7,9. 
It should be noted that AT → GC mutations (and vice versa) are in the present work taken to mean all possible 
combinations of A and T to G and C (G and C to A and T). DNA methylation also occurs in organisms with a cell 
nucleus (eukaryotes) and it is therefore reasonable to expect an AT mutational bias for these organisms as  well9. 
However, as many larger multi-cellular organisms reproduce sexually homologous recombination may obscure 
any such mutational AT bias observed for non-recombining asexually reproducing  organisms6. Homologous 
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recombination seems to increase GC content in eukaryotes as a consequence of a process referred to as GC-
biased gene  conversion10. Identifying AT/GC mutational biases is therefore difficult in sexually reproducing 
organisms and thus not considered in the present study. For larger multi-cellular organisms the GC content is 
fairly stable between species although there can be local genomic differences, for instance CpG islands, which 
are usually not present in  prokaryotes6. For prokaryotes, within-species genomic GC content is stable while GC 
content between different species can vary substantially, from 13.5% GC to 75%  GC11. This variation in genomic 
GC content appears to have both an environmental component as well as a phylogenetic  one12,13. Environmental 
influence on genomic GC content in prokaryotes appears to be mediated, at least to some extent, as selective 
 pressures14,15. In this respect, it is of interest to note that large drops in genomic GC content is wide-spread in 
 prokaryotes7 while examples of substantial increase is practically non-existent as of  now16, although smaller 
increases are  documented13,15,17,18. Examination of AT- and GC mutation rates in prokaryotes points to an AT 
bias also in recombining microbes while AT → GC substitutions are more likely to be  retained9,19.

A previous  study11 modelling the evolution of genomic GC content in microbes living in a stable symbiotic 
relationship with an eukaryotic host, usually insects, suggested that AT → GC mutation rates, and vice versa, may 
determine the symbiotic species fate early on in the organism’s history provided mutation rates are approximately 
constant. Microbial symbionts often live in low density populations, are unable to perform homologous recom-
bination and lack many DNA repair genes implying that mutations accumulate, often in a clock-like  manner20. 
If the selective pressures are not strong enough to purge deleterious and fitness decreasing mutations from the 
symbiont’s genome, it will  decay21. This process is known as Muller’s  ratchet22. For clonal, non-recombining 
symbionts, the evolutionary process of Muller’s ratchet will always incur, the only question is  when22.

Since microbial symbionts do not recombine and live in a stable environment with their eukaryotic host 
it makes sense to model the random perturbations of their AT- and GC mutation rates as a Gaussian white 
noise multiplied by a constant, or a fixed parameter, to be estimated, as has previously been  done11. For non-
recombining, asexually reproducing organisms in general, subjected to differing selective pressures over time, 
modeling AT/GC mutation rate perturbations as a Gaussaian white noise multiplied with a constant would be 
too simplistic. It is more natural to model random perturbations of AT/GC mutation rates in such organisms 
as a Gaussian white noise multiplied by a function varying with respect to time, as this will allow the model 
to account for varying selective pressures. As such, the purpose of the present work is to model the evolution 
of genomic GC content as a consequence of AT → GC, as well as GC → AT, mutation rates subject to random 
perturbations c(t) over time t for all non-recombining, Chargaff parity law compliant organisms, regardless of 
which kingdom they belong to, and explore the evolutionary implications. A connection between the derived 
model and the classical Luria-Delbruck mutation  model23 is also established.

Methods
The mathematical model. The model presented in this study is an extension of models from previous 
 work9,11,19. A brief overview and elaboration of these models is included in the Supplementary Appendix. In 
particular, the present work is an extension of a model describing the evolution of genomic GC content as a 
consequence of AT/GC mutation rates with random perturbations for microbial  symbionts11. As there are many 
similarities between present- and the previous work on microbial  symbionts11 only the steps separating these 
models and details necessary for a complete comprehension are included.

First, Ft(ω) represents genomic GC content at time t for all trajectories ω ∈ � (for details  see11,19) such that:

That is, the change in genomic GC content Ft+�t(ω)− Ft(ω) during time �t , for trajectory ω ∈ � , is a frac-
tion multiplied with genomic GC- and AT content, respectively described by αFt(ω)�t and (β(1− Ft(ω)))�t . 
Somewhat inaccurately this will be interpreted as the GC content of single nucleotide polymorphisms (SNPs/
variable sites) in a species during time �t . It will be shown later that there is a natural way of accurately extracting 
SNP GC/AT content from Eq. (1). If it is assumed that �t → 0 Eq. (1) can be written as a differential equation:

The AT → GC and GC → AT mutation rates, designated as α and β respectively, are subject to random 
perturbations Wt(ω) that can vary with time multiplied by a function c(t), i.e. α = a+ c(t)Wt(ω) and 
β = b+ c(t)Wt(ω) . It is therefore assumed that c(t) is a measurable function and that Wt(ω) is a Gaussian 
white  noise24 with respect to all trajectories ω from the set � . Furthermore, Eq. (2) belongs to the probability 
space (�,Ft , P) while c(t) is an element of the measure space (R+,G, dt) . Ft is the filtration of � with respect to 
each time t ∈ R

+ (i.e. [0,∞) of which G is a Borel algebra and dt the corresponding Lebesgue measure), and P is a 
probability (Lebesgue) measure on the space of trajectories � . The filtration Ft is interpreted as the evolutionary 
history of trajectories ω up to time t. Some further re-arrangements gives:

The equation:

(1)Ft+�t(ω)− Ft(ω) = αFt(ω)�t + β(1− Ft(ω))�t.

(2)
dFt(ω)

dt
= αFt(ω)+ β(1− Ft(ω)).

dFt(ω)

dt
=(a+ c(t)Wt(ω))Ft(ω)+ (b+ c(t)Wt(ω))(1− Ft(ω))

= aFt(ω)+ c(t)Wt(ω)Ft(ω)+

+ b(1− Ft(ω))+ c(t)Wt(ω)(1− Ft(ω))

= aFt(ω)+ b(1− Ft(ω))+ c(t)Wt(ω).
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can be written as a differential form as was explained in the previous  study11:

Recall that the white noise process dWt is often interpreted as dBtdt  so that dBt = dWtdt . If c(t) = c , where c 
is a constant, Eq. (4) will coincide with the model for microbial  symbionts11 and so is a generalization of that 
model. The Brownian motion term can additionally be a c-scaled Brownian motion which was previously also 
 shown11 to be a Brownian motion there termed B̂t . Using the Itô  formula24:

Equat ion (4)  can be  g iven an expl ic it  solut ion through the  integrat ing fac tor 
g(t, Ft(ω)) = Yt(ω) = e(−(a−b)t)Ft(ω).

Because ∂
2g

∂x2
(t, x) = 0  (see24 for details), the last term of Eq. (5) is equal to zero. As a result,

Ft(ω) can then be given an explicit formula:

which, by assuming s ∈ [0, t] , gives

and therefore

An analogous argument to the previous  study11 gives an explicit formula for the finite variation term 
∫ t
0 be

(a−b)(t−s)ds . The quadratic variation Brownian motion term 
∫ t
0 c(s)e

(a−b)(t−s)dBs however must be approxi-
mated numerically, not least due to the unspecified measurable function c(t):

which is subject to the constraints t ∈ [0,∞) and 0 < Ft(ω) < 1 . The integration constant c0 is just included in 
F0 . It should be noted that for F0 = 0,

Since the Brownian motion term vanishes as a consequence of the expectation operator E (see p. 30 of Ref.24), 
the solution to (7) when t = x is exactly the model for SNP GC content with respect to core genome GC content 
x described  previously9,19, a brief elaboration is also included in the Supplementary Appendix. Moreover, this 
means that it is not necessary to calculate the Brownian motion term when estimating the AT- and GC mutation 
rate parameters a and b.

The variance is given by Var(Ft(ω)) = E((Ft(ω)− E(Ft(ω))
2) , which can be solved by setting:

and

which gives:

(3)
dFt(ω)

dt
= aFt(ω)+ b(1− Ft(ω))+ c(t)Wt(ω),

(4)dFt(ω) = (aFt(ω)+ b(1− Ft(ω)))dt + c(t)dBt(ω).

(5)dYt(ω) =
∂g

∂t
(t, Ft(ω))dt +

∂g

∂t
(t, Ft(ω))dFt(ω)+

1

2

∂2g

∂x2
(t, Ft(ω))(dFt(ω))

2.

dYt(ω) =
∂g

∂t
(t, Ft(ω))dt +

∂g

∂x
(t, Ft(ω))dFt(ω)

=− (a− b)e(−(a−b)t)Ft(ω)dt + e(−(a−b)t)dFt(ω)

=− (a− b)e(−(a−b)t)Ft(ω)dt+

+ e(−(a−b)t)(((a− b)Ft(ω)+ b)dt + c(t)dBt)

=be(−(a−b)t)dt + c(t)e(−(a−b)t)dBt .

d(e(−(a−b)t)Ft(ω)) = be(−(a−b)t)dt + c(t)e(−(a−b)t)dBt ,

e(−(a−b)t)Ft(ω)− F0(ω) =

∫ t

0
be(−(a−b)s)ds +

∫ t

0
c(s)e(−(a−b)s)dBs ,

(6)Ft(ω) = F0(ω)e
(a−b)t +

∫ t

0
be(a−b)(t−s)ds +

∫ t

0
c(s)e(a−b)(t−s)dBs .

(7)Ft(ω) = −
b

(a− b)
+ (F0(ω)+

b

(a− b)
)e(a−b)t +

∫ t

0
c(s)e(a−b)(t−s)dBs ,

(8)E(Ft(ω)) =
b

(a− b)

(

e(a−b)t − 1

)

.

A := F0(ω)e
(a−b)t +

b

(a− b)

(

e(a−b)t − 1

)

,

B :=

∫ t

0
c(s)e(a−b)(t−s)dBs ,
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Applying the Itô isometry (see p.  2624):

The formula cannot be given an analytic representation due to the unspecified function c(t) but it is clear 
that the integral 

∫ t
0 c(s)

2e2(a−b)(t−s)ds → ∞ as c(s) increases for s → t . As was argued in the previous study on 
microbial  symbionts11, it will be assumed henceforth that (a− b) < 0 where a and b are respectively the AT→ GC 
and GC→ AT mutation rate parameters that can be estimated  (see9,19). The previous  study11 also showed that 
a and b could be considered as unspecified measurable functions. However, as constant mutation rates are not 
 uncommon25 a and b will henceforth be regarded as constants, or parameters to be estimated, to avoid unneces-
sary complication of interpretation, formulation and derivation of the model.

The Brownian motion term. The term:

depends on the parameters a and b as well as on the duration of the time period. Since it is assumed that 
(a− b) < 0 , c(s)e(a−b)(t−s) → c(s) for s → t . The term can be written as:

where Ws(ω) is scaled white noise with mean µ = 0 , variance σ 2 = 1  (see19), �si = si+1 − si , and 
s0 = 0, . . . , si = ti , . . . , sN = t . The right hand side term of Eq. (11) can be calculated manually by inserting 
values for each value si and mutation parameters a and b. Each Gaussian white noise Wsi (ω) can be sampled 
from a normal distribution.

The Girsanov transform. The Girsanov transform implies that Eq. (7), if an appropriate transform exists, 
can be considered as a Brownian motion. In other words, given the appropriate transform, genomic GC content 
can be seen to be just as likely to increase as to decrease. This is a scenario that can arise when DNA mismatch 
and repair enzymes are knocked out and the species is subjected to reduced selective pressures which is some-
times recreated in laboratory settings such as the long term evolutionary experiment (LTEE)8. The random per-
turbations of AT/GC mutation rates are represented here as Gaussian white noise multiplied by an unspecified 
deterministic measurable function c(t). Together with the Gaussian white noise term Wt(ω) , the function c(t) 
allows for modeling of environmental influences and species-specific traits perturbing the AT/GC mutation rates 
over time t. Since Eq. (4) is a stochastic differential equation, with some restrictions it can be transformed into a 
Brownian motion if the SNP GC content of the organism is to be modelled as being just as likely to increase as to 
decrease. Such a model may be suitable for organisms in laboratory settings where selective pressures are absent 
with DNA mismatch and repair enzymes knocked out. If it is assumed that t ∈ [0,T] for a fixed time T, then:

To see that the Girsanov theorem applies to Ft(ω) recall that for Yt(ω) = e(−(a−b)t)Ft(ω):

Since Ft(ω) is a semi-martingale, the Girsanov II theorem (p.  16724) can be used. Let

and thus:

φ(t,ω) can then be set to zero so that:

Var(Ft(ω)) = E

(

(Ft(ω)

)

− E

(

Ft(ω)

)2

= E

(

(A+ B)2 − 2(A+ B)A+ A
2

)

= E

(

A
2 + 2AB+ B

2 − 2A
2 − 2AB+ A

2

)

= E(B2) = E

((
∫

t

0

c(s)e(a−b)(t−s)
dBs

)2)

.

(9)E

((
∫ t

0
c(s)e(a−b)(t−s)dBs

)2)

= E

(
∫ t

0

(

c(s)e(a−b)(t−s)

)2

ds

)

=

∫ t

0
c(s)2e2(a−b)(t−s)ds.

(10)
∫ t

0
c(s)e(a−b)(t−s)dBs ,

(11)
∫ t

0
c(s)e(a−b)(t−s)dBs = lim

�si→0

sN
∑

s0

c(si)e
(a−b)(t−si)(Wsi+1(ω)−Wsi (ω))�si ,

(12)dFt(ω) = ((a− b)Ft(ω)+ b)dt + c(t)dBt(ω).

(13)dYt = be(−(a−b)t)dt + c(t)e(−(a−b)t)dBt .

c(t)e(−(a−b)t)u(t,ω) = be(−(a−b)t) − φ(t,ω),

u(t,ω) = c−1(t)

(

b− φ(t,ω)e(a−b)t

)

.
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which means that c(t) in Eq. (4) is required to have an inverse function c−1(t) . Let

and set

with respect to the filtration Ft , assume that the Novikov condition (see p.  16524) holds:

so that the Radon–Nikodym derivative Mt is a martingale. Then Q is a probability measure with respect to the 
filtration Ft and

is a Brownian motion with regards to the measure Q and so is Yt , according to the Girsanov theorem:

Since Yt(ω) = e(−(a−b)t)Ft(ω) it is clear that Ft(ω) is also a Brownian motion with respect to Q. Hence, given 
the right transform Ft(ω) is just as likely to increase as to decrease. If Ft(ω) is considered to represent a culture 
in an LTEE-type  experiment8,26,27, where mismatch and repair genes are knocked out with selective pressures 
assumed to be at a minimum, and a transform, as discussed above, can be justified, the function c(t) must have 
an inverse, i.e. c(t) must be either monotonically increasing or decreasing. In evolutionary terms, an increasing 
c(t) could potentially be interpreted as extinction, for reasons described above, while a decreasing c(t) may be 
reflective of a bottleneck event.

Calculation and presentation of the models. The figures based on the models described above were 
made with Julia version 1.6.128. The “Differential Equations” library was used to compute the differential equa-
tions numerically. The ordinary differential equation models (ODEs) were estimated with the “Tsit5” algorithm 
(the fifth order adaptive time stepping method) while the stochastic differential equation based models were 
calculated with the EM method (Euler–Maruyama). All figures were created with Julia and the “Plot” library.

Results and discussion
The main model. As mentioned above, the present work is based on a previous  study11 where the aim was 
to model the evolution of genomic GC content, as a consequence of AT/GC mutation rates, in microbial sym-
bionts over time t. The present work however is not limited to the genomes of microbial symbionts, which tend 
to live in a stable relationship with their hosts, but to all asexually reproducing organisms regardless of which 
kingdom they belong to, including virus. It is still assumed that the genomes of the organisms considered comply 
with Chargaff ’s parity  laws4. In particular, it is assumed that genomic %G is approximately equal to %C and that 
%A is similar to %T on each strand in the genomes of the organisms considered. Although Chargaff ’s parity 
laws were stated for most organisms with double stranded DNA genomes they also apply to many viruses with 
single stranded RNA  genomes6. Indeed, the pathogen responsible for the currently ongoing Covid-19 pandemic, 
SARS-CoV-2, has a single strand, positive sense, RNA genome that obeys Chargaff ’s parity rule with approxi-
mately 38%  GC29,30. Nevertheless, increasing the generality of the previous model to the genomes of all asexually 
reproducing organisms implies that the assumption of constantly scaled random perturbing AT/GC mutation 
rates, which could be justified in a stable host-symbiont relationship, is no longer tenable. It is now therefore 
assumed that the random perturbations to AT/GC mutation rates vary according to a Gaussian white noise mul-
tiplied by a measurable function c(t) with respect to time t as previously deduced, Eq. (7):

If restrictions on the function c(t) can be justified in a modeling setting Eq. (7) can be applicable to the Gir-
sanov  transform24 making the whole model Ft a Brownian motion in it self. This implies that Ft is just as likely to 
increase as to decrease with respect to the measure resulting from the Girsanov transform. In other words, it can 
then be guaranteed that Ft(ω) is an unbiased Brownian motion relative to a measure Q(ω) . SNP GC content then 
follows a completely random path ω ∈ � according to the law of Brownian motion. Due to influences from posi-
tive- and negative selection and mismatch and repair systems this is typically not observed outside  laboratories8.

The evolutionary dynamics of c(t). AT/GC mutation rates are allowed to have random perturbation 
varying according to a function c(t) with respect to time t, i.e. α = a+ c(t)Wt(ω) and β = b+ c(t)Wt(ω) where 
Wt(ω) is a Gaussian white noise with respect to every trajectory ω ∈ � . This has implications for the resulting 
Brownian motion term Eq. (10):

u(t,ω) = c−1(t)b,

Mt = exp
(

−

∫ t

0
u(s,ω)dBs −

1

2

∫ t

0
u2(s,ω)ds

)

,

dQ(ω) = Mt(ω)dP(ω),

E

[

exp
(1

2

∫ t

0
u2(s,ω)ds

)

]

< ∞,

B̃t(ω) =

∫ t

0
u(s,ω)ds + Bt(ω),

dYt(ω) = c(t)dB̃t(ω).

dFt(ω)

dt
= aFt(ω)+ b(1− Ft(ω))+ c(t)Wt(ω).
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Indeed, an increasing c(t) results in greater variance for Ft(ω) as s → t while a decreasing c(t) results in 
reduced variance. Figure 1 demonstrates Ft(ω) for different c(t) functions. Increased variance of Ft(ω) can be 
interpreted as increasing the intrinsic genomic base composition variation. However, increased genomic base 
composition variance (i.e. genomic GC content variance) could also describe accumulation of fitness decreasing, 
and even deleterious,  mutations15,31. Hence, increased variance with regards to perturbation of AT- and GC muta-
tion rates highlights the trade-off between more genetic diversity versus an increased chance of accumulating 
fitness decreasing and deleterious mutations and subsequent extinction. For decreasing c(t), variation in base 
composition is reduced, something that is likely to happen in a scenario of increasing purifying  selection15,32. 
Organisms living in large  populations33 or highly adapted to their  environments15 would arguably be expected 
to have lower c(t) values than organisms subjected to more diverse and changing environments. It has previ-
ously been shown that nucleotide diversity in microbes increases with AT  content15. That is, GC rich bacteria 
tend to have a more homogeneous nucleotide composition while AT rich bacteria have genomes comparably 
more heterogeneous in terms of nucleotide  composition34. The underlying reasons for this decreasing nucleotide 
diversity gradient, from AT rich to GC rich genomes, is not known but years of research has shed some light on 
the issue. For instance, GC rich bacteria are mostly found in soil, with excess  nitrogen32. Soil bacteria have large 
genomes and are often capable of metabolising a wide range of  compounds13. AT-rich bacteria, on the other hand, 
are often  symbionts35 and  pathogens36 with reduced genome sizes. As mutations in prokaryotes are universally 
biased towards increased AT  content7, loss of proof reading enzymes as well as DNA mismatch and repair genes, 
both hallmarks of relaxed selection, could be driving the greater genetic diversity found in these  bacteria37. It has 
also been shown that the energetics of stacked A/T and G/C nucleotides is important in establishing genomic 
base  composition5. Between-strand binding of A to T requires only two hydrogen bonds as compared to the 
three hydrogen bonds required for G to C  bindings1. Guanine and cytosine also require the availability of more 
 nitrogen38. Within eukaryotic genomes, GC content vary considerably more than within prokaryotic  genomes6. 
The genomes of most eukaryotes have a substantially lower fraction of gene-coding DNA allowing for greater 
variation in GC content implying an increasing c(t)6. Viral genomes often mimic their hosts with respect to GC 
content and since their genomes are small, with a high fraction of coding genes, genomic GC content is typically 
far more stable than that observed for eukaryotic genomes and often comparable to  prokaryotes6. A lower c(t) is 
therefore likely more suitable for both virus and prokaryotes as compared to most eukaryotes.

Evolutionary implications of the model. The selective pressures a species is subjected to can, to some 
extent, be modeled by the measurable function c(t). In such cases, c(t) should be as close to zero as possible 
to avoid excessive hitch-hiking of fitness decreasing or deleterious  mutations31. However, it will likely require 
several trade-offs for species’ to reduce the random variation of AT- and GC mutation rates representative of 

∫ t

0
c(s)e(a−b)(t−s)dBs .

0.3

0.4

0.5

0.6

G
C

P1

Time

P2 P3

Figure 1.  The figure demonstrates three different (P1–P3) evolutionary scenarios, each realized 5 times, for the 
model describing the evolution of genomic GC content (vertical axis) of a species over time t (horizontal axis) 
as a consequence of AT/GC mutation rates. The thick red line represents the deterministic model without the 
Brownian motion term. All parameters are the same for all scenarios (i.e. a = − 2 , b = 1 , F0 = 0.5 and T = 1 ) 
except for the function c(t) that determines the influence of the random perturbations on the AT/GC mutation 
rates. Panel P1: c(t) = 1

2

√
t , Panel P2: c(t) = 1

2
(T − t) , Panel P3: c(t) = 1

2
(T − t)2.
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low c(t) values; considerable resources must likely be divested to several genomic processes to assure that fitness 
decreasing and deleterious mutations are purged. Moreover, a changing environment may require species’ to 
adapt rapidly implying the availability of an increased number of genotypes. A greater number of genetic vari-
ants require that the mutation rates reach a level that maximizes chance for survival of the  species39. At the same 
time, if mutation rates increase to such an extent that deleterious mutations cannot be avoided or purged by 
selection the evolutionary process of Muller’s ratchet will  ensue22.

Whether mutations increase or decrease, genomic GC content depends on the environment and the selec-
tive pressures operating on the species’ genomes. Some environments could favour energetically affordable A/T 
nucleotides while others might require the more costly G/C  nucleotides5. In addition, phylogeny will also influ-
ence the selection of A/T or G/C  nucleotides13 as a consequence of the mismatch repair system and/or proof 
reading  enzymes8,15,40.

While there are many examples of microbial genomes becoming more AT  rich32 there are so few examples of 
genomes becoming more GC rich that it was recently suggested that it may not happen at  all16. Some examples 
have however been observed in the microbial world although the increase is  minuscule14,15,41. It is not completely 
resolved whether the few examples of microbial genomes becoming more GC rich is tied to  recombination42, 
which seems to be the case for recombining eukaryotes, or  selection6,14,17.

Muller’s ratchet can, with respect to the model discussed here, be interpreted, in certain circumstances, as 
when the Brownian motion term completely overwhelm the AT/GC mutations rate terms in Eq. (3). This can 
be seen in Fig. 1 panels P1–P2, while panel P3 is an example of c(t) diminishing it’s influence with time, which 
can be interpreted as a population being subjected to increasing selective pressures. It is interesting to note that 
allowing for random perturbation of AT/GC mutation rates introduces a term that will unequivocally lead to 
greater variability of genomic base composition (see Eq. (6)); the larger the perturbations the greater the impact 
of the Brownian motion term on genomic variability as can be seen in Fig. 1. Put differently, according to the 
presented model genomic base composition can be modified by varying the random perturbations of the AT/
GC mutation rates. It is therefore not unlikely that this is one of the reasons that mutation rates are occasion-
ally found to be remarkably stable over a diverse set of organisms and, in particular, negatively associated with 
population- and genome size in single cell  organisms25,33,43.

Assuming that Eq. (7) is a Brownian motion, in the sense that it is just as likely that GC content will increase 
as it will decrease, it is required by the Girsanov theorem, as seen in the Methods section, that c(t) has an inverse 
function meaning that c(t) must either be increasing or decreasing. Depending on the context, an increasing c(t) 
can be interpreted as the process of Muller’s ratchet, and thus subsequent extinction, due to an implicit accu-
mulation of fitness decreasing and deleterious mutations. In other words, if it can be argued that c(t) should not 
be decreasing (i.e. resources are finite), increasing random perturbations affecting AT- and GC mutation rates 
could lead to genome decay. Interestingly, this has been demonstrated in a laboratory experiment and described 
in a recent study based on the  LTEE8. Nevertheless, it should be emphasized that the mathematical model does 
not intrinsically include the concept of fitness and therefore all such explanations are necessarily interpretations.

Evolution of genomic GC content and the Luria–Delbrück mutation model. By setting β = 0 in

Equation (3) can be interpreted as a simple model for stochastic population growth (p.  6524):

where π = k + pWt(ω) , k is the growth parameter to be estimated. p is considered to be a constant in this setting 
so that an analytic solution is possible. By using the Itô formula, along the lines described in the Supplementary 
Appendix and Ref.24, to solve for Pt(ω) , and, subsequently, multiplying with a parameter µ , taken to be a param-
eter designating mutations per unit time, a simple model for calculating the number of mutations in a population 
is obtained. This is an stochastic Itô calculus version of the model presented in the classical Luria–Delbrück 
fluctuation  experiment23 (see Supplementary Appendix), i.e.

Hence, in this simple model the number of mutations in the study population is equal to the population size 
Pt(ω) multiplied with the mutation rate µ . It can be seen from the above equations, as well as in Fig. 2, that as k 
approaches p

2

2  a randomly fluctuating population will increasingly influence mutation rates. In other words, as 
the size of the population, as well as the growth rate, declines stochastic effects become more  dominant44 resulting 
not only in increased genetic variation (see Fig. 2) but also the danger of decay due to accumulation of fitness 
decreasing and deleterious mutations from genetic  drift33.

Mt(ω) represents the total number of mutations in a population Pt(ω) , typically represented by mutations in 
one genome. If we assume that also Mt(ω) complies with Chargaff ’s parity rules  (see19) we can write:

dFt(ω)

dt
= αFt(ω)+ β(1− Ft(ω)).

dPt(ω)

dt
= πPt(ω),

Mt(ω) = Pt(ω)µ = P0µ exp

((

k −
p2

2

)

t + pBt(ω)

)

.

Mt(ω) = MAT
t (ω)+MGC

t (ω),
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where MAT
t (ω) and MGC

t (ω) represents the number of A+T and G+C mutations, respectively. Equation (3) 
gives the fraction of GC mutations at time t and can be interpreted as the GC content of SNPs at that time. By 
multiplying Eq. (3) with the genome size g the number of GC mutations is given:

However, g dFt (ω)
dt  will only be equal to Mt(ω) if Mt(ω) = MGC

t (ω) . If Mt(ω) = MAT
t (ω) , g dFt (ω)

dt  will be 
negative which is impossible to reconcile with the fact that Mt(ω) ≥ 0 . But since the right hand side of Eq. (3), 
multiplied with g, can be written as:

It is clear from Eq. (14) that MGC
t (ω) and MAT

t (ω) respectively correspond to 
∣

∣

∣

∣

gαFt(ω)

∣

∣

∣

∣

 and 
∣

∣

∣

∣

gβ(1− Ft(ω))

∣

∣

∣

∣

 . 

Therefore,

which is the number of mutations at time t.
A model for mutation accumulation can be written as the Lebesgue integral:

or:

Conclusions
The presented work has been concerned with modelling the evolution of genomic GC content, as a consequence 
of AT/GC mutation rates, in asexually reproducing organisms subject to Chargaff ’s parity  laws4. It is an exten-
sion of a previous study modelling genomic GC content in microbial symbionts allowing for random perturba-
tions of AT- and GC mutation rates by the use of Itô  calculus24. In that  study11, it was shown that a symbiont’s 

g ·
∣

∣

∣

dFt(ω)

dt
= αFt(ω)+ β(1− Ft(ω)).

(14)g ·
∣

∣

∣
αFt(ω)+ β(1− Ft(ω)).

Mt(ω) = MAT
t (ω)+MGC

t (ω) = g ·

(∣

∣

∣
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∣

∣

∣
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∣

∣

∣

)

,

∫ t

0
Ms(ω)ds,

∫ t

0
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(
∣

∣

∣
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αFs(ω)
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∣

∣
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∣

∣

∣

)

ds.
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Figure 2.  The figure demonstrates three different (P1–P3) scenarios for the stochastic Luria–Delbrück model, 
each realised 5 times, showing the mean number of mutations Mt(ω) (vertical axis) in a population at time t 
(horizontal axis). All parameters are the same for all scenarios ( P0 = 1 , µ = 5 , k = 1 and T = 1 ) except for p 
that determines the influence of the random term. Panel P1: p = 1

2
 , Panel P2: p =

√
2 , Panel P3: p = 2 . The red 

line designates the Luria–Delbrück model without the Brownian motion term.
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life course could be determined when it entered into a relationship with it’s host. The present model does not 
allow for such a conclusion in general as the organisms modeled can both be diverse and live in very different 
environments. The evolution of the genomic GC content of these organisms can thus be better represented as 
a function c(t), regulating the influence of the random perturbations on AT/GC mutation rates, as opposed to 
a constant for microbial symbionts. An increasing c(t) will reflect greater base composition diversity but also 
implicit genetic hitch-hiking of fitness decreasing and deleterious  mutations31. Processes described by a low c(t) 
will likely reduce genetic variation but require the divestment of increasing resources to mismatch and repair 
systems. Interestingly, Eq. (7) implies that increasing the variability of the random perturbations of the AT- and 
GC mutation rates impacts genomic GC content through the Brownian motion term.

Laboratory based evolutionary  experiments8,26,27 often arrange conditions so that the selective forces subjected 
to the species’ studied are as low as possible. Furthermore, recombination related genes as well as mutation repair 
enzymes are often knocked  out8 reducing bias considerably with regards to AT → GC and GC → AT mutation 
rates. The model presented suggests that if genomic GC content is just as likely to increase as to decrease c(t) 
must either be monotonically increasing- or decreasing due to constraints resulting from the Girsanov trans-
form. An interpretation of this is that if not resources are limitless a constantly increasing c(t) will eventually 
represent genomic disintegration, as described by Muller’s  ratchet22, something that has been demonstrated 
 experimentally8. Furthermore, it is shown that there exists an intimate relationship with the model presented 
here and the classical Luria–Delbrück model for general  mutations23. Indeed, disregarding AT mutation rates 
by setting β = 0 in Eq. (3) gives an identical model to simple stochastic population growth Pt(ω)24 which, when 
multiplied with a mutation rate µ , gives a stochastic Luria–Delbrück model for the number of mutations Mt(ω) . 
After some re-arrangements, it is shown above that Eq. (3) is related to Mt(ω).

Finally, Itô calculus facilitates modeling of phenomena often found in complex systems such as financial 
 markets45. An additional consequence of the present study is that Itô calculus also models biological phenomena 
seamlessly thanks to the ability of handling random events in differential equations.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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