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Epidemiological analyses of health risks associated with non-optimal temperature are traditionally 
based on ground observations from weather stations that offer limited spatial and temporal coverage. 
Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure 
coverage, and yet are to be systematically explored for their suitability in assessing temperature-
related health risks at a global scale. Here we provide the first comprehensive analysis over multiple 
regions to assess the suitability of the most recent generation of reanalysis datasets for health impact 
assessments and evaluate their comparative performance against traditional station-based data. 
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Our findings show that reanalysis temperature from the last ERA5 products generally compare well 
to station observations, with similar non-optimal temperature-related risk estimates. However, the 
analysis offers some indication of lower performance in tropical regions, with a likely underestimation 
of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure 
variables in epidemiological analyses of temperature-related risk.

In situ measurements from weather stations are often regarded as the gold-standard in epidemiological studies1. 
Though generally considered representative of the actual ambient conditions and individual’s exposure, their 
broader application in environmental epidemiology is often constrained by inhomogeneous records and the 
sparse density of meteorological stations. In addition, the geographic proximity of the measurements to the popu-
lation under study is not always guaranteed. These limitations are generally more evident in low- and middle-
income countries where the network of ground stations is often sparse or non-existent, or the quality control 
protocols are usually not standardized2. Moreover, even in high-income regions where historical observations 
are better maintained, the stations are often located outside populated areas, e.g., at nearby airports or remote 
weather observatories, and thus not truly representative of the exposure of populations living in large urban 
centres3,4. This further limits the potential usage of single- or multiple-monitoring stations in capturing local 
phenomena, such as urban heat island (UHI) effects that can enhance heat stress especially during heat waves5.

In recent years, data from climate reanalysis are routinely being applied as pseudo-observations in sectoral 
impacts assessments6,7. Reanalysis data products are obtained by runs of global or regional weather forecasting 
models under observationally constrained scenarios via data assimilation8,9. These products offer an immediate 
advantage over in situ measurements by providing consistent historical records of numerous meteorological 
variables, spanning the whole globe at various spatial and temporal resolutions. A number of global forecasting 
and research centres make their quality-controlled reanalysis data products freely available. However, their usage 
in health impact assessment has been limited and often been restricted to regional scale studies10,11.

Only a few studies to date have compared the use of climate reanalysis data by comparing estimates of epide-
miological associations versus station-based observations, in particular for quantifying mortality risks associated 
with non-optimal temperatures10–13. These studies have generally found a good correlation between the two 
sources and similar estimates of health impact. However, these assessments were limited to single countries10,12 
or regions11,13 with high-quality stations measurements, thus limiting the generalisability of the findings. More 
importantly, the evaluation has remained largely restricted to the inspection of temperature distributions and 
estimated exposure–response curves, without a comparative analysis of performance that can identify the prefer-
able option and quantify potential biases.

Here, we perform a comprehensive assessment of temperature-related mortality risks using ground weather 
stations observations and state-of-the-art reanalysis data across 612 cities within 39 countries over the period 
1985–2019. The analysis plan is illustrated in Fig. 1. Briefly, we first systematically compared the correlation 
between daily temperature series derived from the two sources, then we evaluated differences in estimated 
exposure–response functions of temperature-mortality relationships, and finally we compared their perfor-
mance using fit statistics. Our underlying objectives are to determine to what extent climate reanalysis data can 
be directly used in health impact analyses, and to compare their performance with ground station records in a 
wider multi-location multi-country setting.

Comparison of reanalysis and station‑based daily temperature time‑series.  We gathered daily 
mean temperature (°C) from station records and all-mortality series for all or non-external causes for the 612 cit-
ies from the Multi-County Multi-City (MCC) Collaborative Research Network (https://​mccst​udy.​lshtm.​ac.​uk) 
(see “Methods”), which offers the largest epidemiological database on temperature-health associations. Daily 
temperature series were derived by single weather stations or averaged across multiple stations at each loca-
tion. Further details of the MCC database, including the data sources and summary statistics are provided in 
the Supplementary Information (SI) Tables S1 and S2. These data were matched with daily mean temperature 
series assembled using the hourly fields of ERA5-Land climate reanalysis14, the most recent iteration of global 
reanalysis products from the European Centre for Medium Range Weather Forecasts (ECMWF) Copernicus 
programme that provides land-surface data at ~ 9 km resolution (see “Methods”). As sensitivity checks, we use 
ERA5 available at ~ 31 km resolution9 as a secondary dataset, whose results we report in the SI.

We first examined the correlation between the ERA5-Land and weather stations’ temperature at each location 
in our study. Figure 2 shows a high correlation in most regions across the world, with a median of Pearson r of 
0.987, and 94% of cities with a score higher than 0.9. However, while the correlation is very high in high-income 
regions, it drops noticeably in few locations, especially in tropical and sub-tropical countries, such as the Philip-
pines, Central America (Costa Rica, Panama), Ecuador, Colombia, and parts of northern Brazil (see Fig. S2 in 
SI for the country-specific distribution of city-specific correlations).

The geographical pattern of high-correlation between the station-based and climate reanalysis temperatures 
is not surprising. First, the station networks and record upkeeping are better maintained in high-income regions, 
with more reliable weather observations2. Second, ground station measurements are an important component 
ingested in reanalysis datasets15,16, and are generally less reliable in areas with a sparse and lower-quality moni-
toring network, such as in low- and middle-income countries, or remote locations17. Additional goodness of 
fit metrics comparing ERA5-Land temperature to station observations are presented in the SI (Fig. S3, Fig. S4, 
Table S2).

https://mccstudy.lshtm.ac.uk
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Figure 1.   A schematic outline of the comparative analysis framework used in this study.

Figure 2.   Correlation between MCC weather station and ERA5-Land daily mean temperature (°C) across the 
612 locations used in the study.
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Comparison of estimated location‑specific exposure–response associations.  Using weather sta-
tion and reanalysis temperature series, we next compared the exposure–response relationship that expresses 
the mortality risk in each of the 612 cities. We estimated the association between temperature and mortality 
using observed and reanalysis data through a two-stage approach widely employed in multi-location studies in 
environmental epidemiology11,18–22 (see “Methods”). In brief, the framework incorporates first-stage time-series 
regressions and second-stage multivariate multilevel meta-analysis to estimate the location-specific exposure–
response curves reporting the relative risk (RR) at each temperature compared to a minimum mortality value 
(MMT).

Figure 3 shows city-specific estimates of the overall cumulative exposure–response curves for a selection 
of cities in the 39 countries, using station observations and ERA5-Land series. An inspection of the expo-
sure–response curves indicates overall a strong agreement between heat- and cold-related risks estimated using 
the two temperature series across several regions of the world. However, there are some notable exceptions. 
Cities in South-American countries (Argentina, Chile, Colombia, Costa Rica, Ecuador, Paraguay, and Uruguay) 
and South-East Asia (Philippines and Vietnam) show a noticeable divergence in heat-related RR from station 
observations and ERA5-Land, especially for very high temperatures. In high-income countries, the estimated 
RR for high temperatures shows divergence only for Sydney (Australia), and to a lesser extent in Seoul (South 
Korea), Tallinn (Estonia) and Athens (Greece).

Focusing on the lower and upper bounds of the temperature distribution, the general pattern in Fig. 3 suggests 
that in contrast to the heat-related risks, the two sets of exposure–response curves in the 39 selected large cities 
agree better for cold-related risks. The pattern is similar when the exposure risks for the 1st and 99th percentile 
temperatures across all locations are investigated using the two temperature sources (Fig. 4, top panel), with 
325 (~ 54%) locations and 395 (~ 65%) locations showing higher cold- and heat-related RRs, respectively, when 
using ground station data, though with an overall high correlation (r > 0.9). Additionally, across majority of the 
locations, the MMT and to a lesser extent, the minimum mortality percentile (MMP) from both station observed 
and ERA5-Land derived estimates agree well (Fig. 4 bottom panel and Table S2), with the MMT estimated using 
station data marginally different from the corresponding estimates derived using ERA5-Land.

Excess mortality due to heat and cold.  Utilising the location-specific exposure–response relationships, 
we next computed the heat- and cold-related excess mortality using the station observation and reanalysis tem-
perature. Excess mortality here is defined as the additional number of deaths and the related fraction due to heat 
and cold23,24 (see “Methods”). In brief, the excess deaths are computed for each day of the series depending on 

Figure 3.   Overall cumulative exposure–response associations in selective cities representative of the 39 
countries (station observations—black and ERA5-Land—red, with 95% confidence intervals (CI)—shaded, 
see “Methods”). Exposure–response associations as best linear unbiased prediction (BLUP, see “Methods”) 
using the distribution drawn from station temperature. Dashed vertical grey lines are the minimum mortality 
temperatures (MMTs). RR relative risk.
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the RR associated to the daily temperature and the observed mortality, and the total is given by the sum of the 
daily contributions separately for the cold and hot range (below and above the MMT, respectively). The fraction 
is computed using the total number of deaths across the series. Figure 5 shows the estimated excess mortality 
fraction by country as separated components due to cold and heat derived using station observed and ERA5-
Land temperatures, for each country grouped by regions (see Tables S2 and S3 in the SI for further details at the 
city, country, regional, climate zone and global levels).

In general, across most countries, the estimates of the excess mortality are very similar, with a global-level 
excess of 0.53% (95% eCI 0.50–0.56) versus 0.49% (0.43–0.53) for heat, and 6.02% (5.80–6.18) versus 6.25% 
(6.05–6.41) for cold, from ground stations and ERA5-Land data, respectively (‘Global’ in Fig. 5 and Table S3). 
These percentages correspond to 357,729 (95% eCI 335,138–376,498) versus 326,032 (288,069–357,247) for 
heat, and 4,030,793 (3,880,068–4,137,579) versus 4,186,014 (4,051,321–4,293,311) for cold. However, similar 
to the analysis of the RR, estimates of heat-related excess mortality were marginally higher for ground stations 
in a number of countries (Fig. 5, right panel). Specifically, the differences in heat-related excess mortality are 
consistent with the pattern identified in the analysis of correlation and RRs, with generally lower estimates 
from ERA5-Land data in regions with lower correlation with ground stations, for instance countries in South 
America and South-East Asia. Additionally, the same pattern is also observed in some other countries where 
higher correlations were noted in Fig. 2, such as Paraguay, Uruguay, Greece, and Romania, though the differences 
in the heat-related excess mortality here could generally be influenced by the limited sample size in our study 
(1–4 cities, Table S1). Focusing on the cold-related excess mortality (Fig. 5 and Table S3), the estimates from 
the two data sources compare remarkably better, with the ERA5-Land in some of the above countries instead 
showing marginally higher excess mortality than the weather station (e.g., Panama, Uruguay), and some other 
high-income countries such as Australia, Canada and Japan revealing a similar pattern.

Analysis of comparative performance.  To facilitate interpretation on the assessment of the two temper-
ature data sources across geographic regions, we developed a metric to measure their comparative performance. 

Figure 4.   Scatterplots of: (a) and (b) cumulative relative risks (RRs) at the 1st and the 99th percentile 
respectively; (c) Minimum mortality temperature (MMT) and (d) Minimum mortality percentile (MMP). 
The RRs, MMP and MMT are based on the respective station and ERA5-Land temperatures of the best linear 
unbiased predictions (BLUPs) for individual cities. Blue lines and the r values represent the linear regression 
trend and the Pearson correlation coefficient of compared variables, respectively. The dashed black line 
represents the 1:1 line.
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Specifically, we defined the relative fitting score (RFS) as the difference in the quasi version of the Akaike infor-
mation criterion (qAIC), which in turn is a statistic related to the goodness-of-fit of the data (see “Methods”). 

Figure 5.   Fraction of all-cause excess mortality (%) due to cold and heat by countries and all 612 locations 
(Global) estimated using station observations (gray) and ERA5-Land (red). The bar plots represent the excess 
deaths. The 95% empirical confidence intervals (eCI) computed using Monte Carlo simulations (see “Methods”) 
are reported in Table S3 in the “Supplementary material”. The range of x-axes are different in the two panels.
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A negative RFS would indicate better predictive skills (i.e., lower qAIC) for the model fitted using ERA5-Land 
temperature, and conversely a positive RFS indicates that the use of weather station temperature improved the 
model’s performance (Methods). The results of RFS plotted in Fig. 6 as distribution of values by countries and 
globally facilitates visualization across locations/regions where each temperature data source is more predictive 
of mortality risks (see Fig. S5 for the map of RFS, and Table S4 for a summary of the RFS by countries).

Focusing on Fig. 6 and Fig. S5, both ERA5-Land and station observations perform likewise in majority of 
the locations in Europe, where actually some countries show a marginally better predictive skill for ERA5-Land. 
For the rest of the world, a similar pattern of neutrality in the predictive skill can be noted for the high- and 
upper-middle income regions (e.g., Canada, USA, Japan, China and Taiwan), with the number of locations near-
equally distributed on either side of the vertical line (see Table S4 for a summary). For the remaining regions 
that are broadly low- and middle-income countries, the pattern suggests a better predictive skill for the station 
observations in South America and South-East Asia. Summarising across all locations (‘Global’ in Fig. 6 and 
Table S4), the predictive skill is almost balanced between the two temperature data sources, with the RFS higher 
for ERA5-Land in 292 cities and for weather stations in 320 cities, respectively.

Limitations of the study and scope for further research.  Our study uses ERA5-Land, a global atmos-
pheric product that represents the last iteration of ECMWF family of reanalysis. While ERA5-Land resolves 
meteorological fields at the highest spatial resolution (~ 9 km) among other global reanalysis products, expand-
ing our comparative analyses to a broader suite of datasets could enable a further systematic evaluation of the 
relative strengths and weaknesses of using reanalysis datasets in environmental epidemiology, an objective left 
for future studies. In addition, while the data gathered by the MCC network used in our study includes various 
types of geographical areas, we restricted our analysis to cities, as associating gridded data even at finer resolu-
tion risks of introducing aggregation bias2. A similar comparative analysis by estimating the exposure–response 
function at wider spatial scales (e.g., counties, districts, federal units) is left for future research. In spite of the 
large number of locations used in our study, our results for a few countries where the mortality data are restricted 
to limited locations (Table S1) could remain sensitive to interpretation. Efforts are ongoing with the MCC net-
work to ingest both weather station and mortality data for a wider network of locations in such countries, as well 
as in countries where till date the data have remained inaccesibile (e.g., in Africa). Such efforts are expected to 
fill further gaps in research by facilitating similar assessments in health impact.

The primary motivation of our study was to examine the suitability of climate reanalysis for assessing tem-
perature-related mortality, in a manner that would facilitate rapid application of gridded reanalysis products 
with location-specific counts of mortality in environmental epidemiology. We therefore followed the standard 
practice of utilising the location’s center point to extract the gridded ERA5-Land data10,11 (“Methods”). Noting 
other approaches such as the area- or the population-weighting of meteorological fields25 that are more com-
monly applied when air pollutants are the exposure variables13, our approach is unlikely to produce substantial 
variations in the temperature-mortality associations when using the high-resolution data from the recent iteration 
of ERA5 products, a finding highlighted in a recent study13.

Moreover, following literature20,24,26–29, our study focuses on temperature as the environmental exposure 
variable of interest. An added advantage of reanalysis data over ground station records is the wider availability of 
essential climate variables (ECV), such as wind, solar radiation, and relative humidity. ECV are commonly used 
to assemble thermal discomfort indices also referred to as measures of health stress, such as the apparent tem-
perature (AT)30,31, the wet-bulb (WBT)32 and wet-bulb globe (WBGT)33 temperature, and the universal thermal 
comfort index (UTCI)34. However, these indices are less frequently employed to examine their relationship with 
mortality (e.g., ERA5-based UTCI)11, and previous epidemiological analyses showed little evidence of a better 
predictive performance of such composite indices in predicting mortality35,36. Nonetheless, similar comparative 
analyses between reanalysis and station recorded ECV (where available) are also recommended.

Finally, several location-specific factors could explain the divergence in the reanalysis and station observa-
tions derived temperature-mortality relationship, especially in the low/high temperature extremes, across the 
612 locations in our study. For instance, geographical and economic factors, such as proximity of the location 
to a coast or hilly terrains, investments in the upkeep and maintenance of the meteorological infrastructures; 
and other social demographics (e.g., varying urban population density across the cities examined in our study), 
could likely be some of the important determinants shaping the differences in exposure–response relationships 
between the two temperature sources. A detailed investigation into these falls outside the scope of the present 
study and is left as a topic for future research.

Discussion
Existing studies assessing the temperature-mortality associations in a large multi-location setting often employ 
in situ measurements18,19,27, or their statistically interpolated gridded counterparts13,37. The aim of our study was 
to demonstrate that climate reanalysis can potentially provide reliable surrogates of temperature for global scale 
epidemiological studies, thereby offering an alternative source of exposure variables. Here we evaluated the per-
formance of temperature gathered from the ERA5-Land atmospheric reanalysis dataset, across multi-locations 
stratified by geographical regions, accounting for low-, middle- and high-income countries, with varying density 
of station records, thus providing a comprehensive and globally representative picture. To our knowledge, our 
study provides the first valuable insights on the suitability of current generation of quality-controlled global 
reanalysis datasets in a multi-location, multi-country framework, spanning five inhabited continents. By quan-
tifying the mortality impacts from weather station and reanalysis data and performing a systematic analysis 
of their comparative performance, our study goes beyond published studies that limited their analyses to the 
exposure–response curves10,11, and for specific regions (Spain10, Europe11 and United States12). Moreover, our 
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Figure 6.   Relative fitting score (RFS) for station observations and ERA5-Land by country. A negative score 
indicates a better performance of the model based on ERA5-Land temperature relative to the model fitted using 
station temperature at a location. The shaded circle in each country panel depicts the median RFS. ‘Global’ 
implies all 612 locations used in the study.
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study is the first to examine ERA5-Land for temperature-mortality associations at a global scale, the high spatial 
resolution of its gridded meteorological fields (~ 9 km) documented to represent land surface variables better14.

Our analyses reveal that ambient temperature drawn from ERA5-Land is generally suitable to elucidate the 
effects of thermal stress on mortality. Importantly, in line with the previous two regional scale studies (Spain10 
and Europe11) that found largely comparable exposure–response curves from weather station and ERA5 data, 
our analyses using ERA5-Land revealed a similar pattern across 612 locations in 39 countries. Our results are 
also comparable to the earlier well-established global multi-location studies based on station records19,24,26,27 
that document similar magnitude of excess mortality from heat and cold exposures across the full range of 
temperatures. However, it must be pointed out that while largely in agreement, the heat-related excess mortality 
estimated using ERA5-Land is marginally lower compared to those estimated using station observations. The 
magnitude of such differences is amplified in low- and middle-income countries generally in the tropics. Such 
differences, even in locations with relatively high correlations between the two temperature data sources, seems 
to suggest a sub-optimal performance of reanalysis data in identifying extremely high temperatures in specific 
regions, that in turn can lead to an underestimation of the health impacts of heat. While not investigated here 
and left as scope for further research, recent studies14,38 have documented improved ERA5-Land derived daily 
maximum temperatures compared to earlier reanalysis products, though marginal errors relative to the cor-
responding station observed daily maximum temperatures remain, which could explain the under-estimated 
excess mortality related to heat in our findings.

In summary, our study provides the first comprehensive comparison between reanalysis and station-based 
data for modelling temperature-mortality associations at a global scale. Our statistical assessments have a poten-
tial to inform the wider research community about the relative performance of meteorological variables and 
indices derived from reanalysis data in wider epidemiological analyses. It must be emphasized that the objective 
of our study is not to advocate the replacement of station observed data by reanalysis datasets for global-scale 
environmental epidemiological analyses. Systematic errors are known to exist in reanalysis products and ERA5-
Land is no exception to these11. Yet, the advantages of homogenized, freely accessible, and frequently updated 
data covering all regions at high spatio-temporal resolutions, have a potential to make reanalysis products suitable 
for use as environmental exposure variables, especially in regions such as large swaths of Africa, where observa-
tions from sparse ground station network can present significant limitations. The consistent spatio-temporal 
coverage also makes reanalysis data attractive for quantifying population attributable fractions, an indicator 
important for health planners and policy makers. Wherever possible though, we recommend using both station 
observed and reanalysis data for a better quantification of uncertainty in results emanating from the source of 
input meteorological variables.

Methods
All analyses in this study were done with R software (version 4.1.0)39 using packages dlnm40 and mixmeta41, 
applied and discussed in earlier studies24,41–43. All graphics in the study including in the supplementary material 
(except Fig. 1 which was created in Microsoft Word) have been generated using R package ggplot2 (ver 3.3.5)44. 
The replication code for all analyses performed in this study is available upon request from the corresponding 
authors. In addition, a number of reproducible examples are included on the personal website of the senior author 
(http://​www.​ag-​myres​earch.​com/r-​code.​html). The mortality series used in the study consist of data aggregated 
over large geographical areas, all ages, and all or non-external causes. The data was originally provided by statisti-
cal authorities in each country from separate data requests and were part of administrative databases including 
completely anonymised information for which so the informed consent is not required.

Mortality and weather station data.  Daily counts of mortality and station observed mean temperature 
for 612 sites across 39 countries (Table S1) are drawn from the Multi-Country Multi-City (MCC) Collabora-
tive Research Network (http://​mccst​udy.​lshtm.​ac.​uk). MCC is a result of an international partnership between 
research teams producing epidemiological evidence on the association between weather and health across the 
globe. The MCC Network has been instrumental in developing state-of-the-art methods in environmental epi-
demiology, as well as in assembling the largest database on weather and health. The data, used in several earlier 
studies20,27–29,45, facilitates continent-wide analysis of environmental stressors and mortality. The data used in 
the present study consists of location-specific counts of daily mortality from all causes or non-external causes 
only (International Classification of Diseases, ICD-9: 0–799; ICD-10: A00–R99) obtained from local authorities 
within each country or region, and the daily mean temperature (°C) gathered from the local weather stations 
(Table S1). For our study, the analysis included 68,357,187 deaths across all 612 locations from 39 countries in 
overlapping periods between 1985 and 2019 (Table S2). Though the MCC network also includes mortality and 
weather station data for wider regions (e.g., provinces), assigning gridded reanalysis fields to the geographical 
boundaries of varying shapes and sizes would require area weighting and aggregation of the meteorological 
variable. To minimize a potential aggregation bias emanating from such spatial interpolation and averaging2, we 
omitted data from 141 such wider regions spanning four countries, and instead chose to restrict our analysis to 
the 612 urban areas. It is also worth emphasizing that the observed daily mean temperature used as the exposure 
index is drawn from city-specific central monitoring stations gathered by the MCC network in each country. 
Our study therefore largely benefits from this detailed spatially explicit weather exposure which becomes dif-
ficult to achieve when using publicly available global daily station data, such as the Global Historical Climate 
Network-Daily (GHCN-D)46 and the UK Met Office Hadley Centre Integrated Surface Database (HadISD)47,48 
that often lack consistent spatio-temporal coverage to construct location-specific time series.

Since the MCC data are available for different time intervals across countries, our multi-location daily time 
series span different time periods between 1985 and 2019, with the shortest being 4 years (2013–2016) for 

http://www.ag-myresearch.com/r-code.html
http://mccstudy.lshtm.ac.uk
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Panama, and the longest being 34 years (1985–2018) for Norway and Portugal. Further details on the individual 
location-specific sources of mortality and station data included in the MCC network are documented in Refs.19,24.

Global climate reanalysis datasets.  We utilised hourly 2-m air temperature from ERA5-Land14,49 made 
available by the European Centre for Medium-Range Weather Forecasts (ECMWF) through the Copernicus 
Climate Change Service (C3S) Climate Data Store (https://​clima​te.​coper​nicus.​eu/​clima​te-​reana​lysis)50. ERA5-
Land resolves meteorological fields at 0.09° (~ 9 km) gridded resolution, the finest spatial resolution across all 
global reanalysis data products that are currently available. As a secondary reanalysis data source, we utilised 
the hourly 2-m air temperature from ERA551,52 that is available at 0.25° (~ 31 km) gridded resolution (results are 
presented in the SI).

ERA5-Land is the most recent atmospheric reanalysis from the ECMWF family of reanalysis datasets14,51 
covering the land surface of the entire globe. It ingests more data sources along with the latest version of the Inte-
grated Forecasting System, incorporates modern parameterizations techniques, and is till date the most advanced 
reanalysis14,53. It resolves many atmospheric and land-surface parameters in near real-time, thus offering a large 
number of meteorological parameters from 1950 to near-present day. In addition, the hourly time resolution 
enables an improved evolution of day-to-day weather systems8,9. The high spatial resolution in ERA5-Land is 
achieved by driving the model with statistically downscaled meteorological forcing14,51 and a lapse rate correc-
tion. ERA5-Land thus offers advantages with a better representation of the land surface processes compared to 
other current generation of reanalysis data products14.

We matched the reanalysis grid cell where each MCC location’s centre point was located and aggregated the 
hourly temperature fields to daily averages for years 1985–2019, taking care to recode the reanalysis daily values 
as missing where the corresponding station temperature was not available. Computation of the daily averages as 
24-h average is also consistent with the daily average station recorded temperature across majority of the locations 
in the MCC network (Table S1). The resulting MCC-reanalysis daily time-series facilitated a detailed comparative 
analysis of the temperature-mortality relationship with its station observations counterpart as described in the 
‘Two-stage modelling framework’ below.

Description of the epidemiological framework.  Two‑stage modelling framework.  We applied the 
well-established two-stage modelling framework11,18–20,42,43 to model the station observed and reanalysis temper-
ature-mortality associations, across the 612 locations covering a wide range of climates and including low- and 
middle-income countries. Location specific temperature-mortality associations were estimated through time-
series analyses with quasi-Poisson regression, with distributed lag non-linear models and multivariate meta-
regression, using R packages dlnm40 and mixmeta41. Multivariate meta-analysis represents a useful analytical 
tool for pooling complex associations through a two-stage procedure22. The flexible modelling framework allows 
for non-linear/lagged responses, separation of effects due to cold/heat and moderate/extreme temperature, and 
heterogeneity of estimates at various geographical levels.21,24,41.

First stage.  To estimate location-specific temperature-mortality associations, we performed separate time 
series analyses with generalized linear models using observed- and reanalysis-temperature and mortality data 
over the entire year in each location. We applied a quasi-Poisson regression in which a quasi-likelihood was used 
to scale the standard deviation of the coefficients proportionally to the observed overdispersion. We modelled 
using distributed-lag non-linear models (DLNMs), a class of models that can describe the complex non-linear 
and lagged dependencies typically found in temperature-mortality studies54. DLNMs account for delayed effects 
of time-varying exposures and quantify overall effects over a predefined lag period. Following the DLNM meth-
odology, we modelled the bidimensional exposure-lag-response association through the combination of two 
functions defined within a cross-basis term. Specifically, we selected a natural cubic spline function with three 
internal knots at the 10th, 75th and 90th percentile of the location-specific temperature distribution to model 
the exposure–response curve, and a natural cubic spline function with three internal knots at equally spaced 
values in the log scale over 21 days of lag for the lag-response dimension. Seasonality and long-term trends were 
modelled with a natural cubic spline with 8 degrees of freedom (df) of time, and the model included indicator 
variables for the day of the week to account for intra-weekly variations in mortality. These choices that specify 
the cross-basis and model terms used to control for long-term and seasonal trends were based on related studies 
from the MCC Collaborative Research Network19,20. The resulting bidimensional set of coefficients from each 
location was then reduced across the lag dimension into the overall cumulative exposure–response curve repre-
senting the association between temperature and mortality summed across the 21 days of lag21.

Second stage.  The location-specific set of reduced coefficients estimated in the first stage were then pooled in 
a multivariate multilevel meta-regression model21,41, with two nested levels of random effects defined a city and 
combinations of climate zones and country. This approach allows heterogeneous effects and provides improved 
estimates of temperature-mortality associations at city level, defined as best linear unbiased predictions (BLUPs). 
BLUPs borrow information across units within the same hierarchical level and can offer more accurate estimates, 
especially in locations with small daily mortality counts or short series. Put differently, BLUPs represent a trade-
off between the location-specific association provided by the first-stage regression and the pooled association. 
This approach enables more robust estimates of risk ratios (RRs) in individual cities compared to location-
specific models23,24. We also included, as fixed-effects meta-predictors, country-level gross domestic product, 
location-specific average temperature and interquartile range and indicators of climatic classification55.

https://climate.copernicus.eu/climate-reanalysis
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We tested and quantified the presence of heterogeneity using multilevel extensions of the Cochran Q test 
and I2 statistic22,56. The city-specific associations defined by the BLUPs were used in the quantification of the 
cold- and heat-related mortality impacts.

Excess mortality due to heat and cold.  Next, we quantified the station observed and reanalysis tem-
perature-related mortality in each location during the study period of 1985–2019 following a method described 
in previous works23,24,42. For each location-day combination, we computed the number of cold- and heat-related 
deaths on the basis of temperature series, daily baseline mortality and the estimated temperature-mortality asso-
ciation represented by the location-specific BLUPs23. Following earlier works23,24,43, we then estimated the total 
number of cold- and heat-related deaths in each location across the study period by summing the daily mortality 
contributions when the temperature on a specific day was lower (higher) than the location-specific reference 
temperature. This reference value corresponds to the minimum point of the BLUP curve and represents the 
optimal temperature value with the lowest mortality risk, often referred to as the minimum mortality tempera-
ture (MMT). We quantified the uncertainty of the estimates by generating 1,000 samples of the coefficients of 
the BLUPs (representing the association) through Monte Carlo simulations, assuming a multivariate normal 
distribution for the estimated spline model coefficients. We obtained empirical confidence intervals (eCI) corre-
sponding to the 2.5th and 97.5th percentiles of the empirical distribution of the cold- and heat- related mortality 
impacts across coefficients. Finally, as elaborated in previous studies13,23,24, we computed the mortality fractions 
using the related total number of deaths as the denominator.

Analysis of comparative fit performance (relative fitting score‑RFS).  We computed the quasi-
Akaike information criterion (qAIC) used in earlier studies13,36 to examine the ability of the two temperature 
series to predict all-cause mortality at each location. This approach provides a quantitative evaluation on the 
performance of each source (reanalysis temperature relative to the station observed data) in modelling excess 
mortality risks associated with non-optimal temperature. As noted earlier, since the first-stage models employ-
ing station observed and reanalysis temperature were both fitted using the same data sample (i.e., ensuring any 
missing observations in daily station records were also systematically omitted from the reanalysis time-series), 
the qAIC becomes comparable and can be used as a robust goodness of fit metric between the two sources. This 
statistic can be summed across countries or regions to facilitate comparisons at different geographical levels.

To facilitate an easier interpretation of the preferred model, we defined a new metric called relative fitting 
score (RFS), as a measure of relative fitting performance. The RFS is computed as the difference between the 
two qAICs:

with a negative RFS indicating a superior predictive ability when using reanalysis temperature, and conversely 
a positive RFS suggesting a better performance of ground station observations.

Data availability
Data from ERA5 and ERA5-Land are publicly available at https://​cds.​clima​te.​coper​nicus.​eu. Station-based tem-
perature and mortality data were collected from participants in individual countries from meteorological and 
health statistics institutions. The data are often released under specific agreements that prevent them to be 
released publicly.

Code availability
Code to perform the analysis and reproduce the figures in the paper is available upon request from the cor-
responding authors.
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