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Climate change has had a major impact on seasonal weather patterns,
resulting in marked phenological changes in a wide range of taxa. However,
empirical studies of how changes in seasonality impact the emergence and
seasonal dynamics of vector-borne diseases have been limited. Lyme borre-
liosis, a bacterial infection spread by hard-bodied ticks, is the most common
vector-borne disease in the northern hemisphere and has been rapidly
increasing in both incidence and geographical distribution in many regions
of Europe and North America. By analysis of long-term surveillance data
(1995–2019) from across Norway (latitude 57°580–71°080 N), we demonstrate
a marked change in the within-year timing of Lyme borreliosis cases accom-
panying an increase in the annual number of cases. The seasonal peak in
cases is now six weeks earlier than 25 years ago, exceeding seasonal shifts
in plant phenology and previous model predictions. The seasonal shift
occurred predominantly in the first 10 years of the study period. The concur-
rent upsurgence in case number and shift in case timing indicate a major
change in the Lyme borreliosis disease system over recent decades. This
study highlights the potential for climate change to shape the seasonal
dynamics of vector-borne disease systems.
1. Introduction
Emergence and range expansion of vector-borne and other infectious diseases
are expected to accompany the many threats of the climate crisis [1,2]. Climate
warming and environmental changes are suspected to have already led to both
geographical range expansion of many vector-borne diseases and increased
incidence in regions where diseases are already established [3–5]. Ecosystems
at northern latitudes are experiencing above-average climate warming, which
can create more favourable conditions for arthropod disease vectors and thus
increase disease hazard [6,7]. In addition to warming, climate change has modi-
fied the seasonal structure in northern latitudes, introducing shorter winters, an
earlier onset of spring and a longer growing season [8]. Phenological changes in
the activity patterns of organisms have become one of the most notable effects
of climate change in temperate regions and can be observed across taxa, from
changes in the onset of plant growth, to reproductive timing in birds and
mammals [9,10].

The speed at which different species respond to climate warming varies,
and asynchronous responses by interacting species can create phenological
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mismatches [11–14]. Vector-borne zoonoses are maintained
by inherently complex ecological networks of hosts, vectors
and pathogens [2]. Phenological overlaps between interacting
components are key determinants of disease dynamics, and
climate change-induced asynchronies are likely to alter dis-
ease trends. Empirical evidence demonstrating linkages
between climate change, seasonality and disease outcomes
has been limited [15,16]. Analysis of consistent, long-term
surveillance data has been recognized as a critical step in
developing an understanding of the ecological and climatic
drivers of disease risk [3,4,15]. Explicit consideration of case
seasonality in surveillance data can improve the detection
of long-term changes in disease trends and is important for
identifying potential effects of climate change on disease
dynamics [17–21].

Lyme borreliosis, or Lyme disease, is a zoonotic infection
caused by certain genospecies of the Borrelia burgdorferi sensu
lato (sl) complex that are transmitted by tick vectors in the
genus Ixodes [22]. The ixodid tick vectors are highly generalist
hematophages that feed on a wide range of vertebrates includ-
ing small and largemammals, birds and reptiles. A bloodmeal
is required for the tick to develop between life stages, from
larvae to nymphs and then adults, and for adult females to
lay eggs [23]. B. burgdorferi sl is acquired by larval and nymphal
ticks during feeding on infected hosts, and then transmitted
during subsequent feedings [24]. The different pathogenic
B. burgdorferi sl genospecies are associated with different
vertebrate groups. In Europe, Borrelia afzelii is found in small
mammals and B. garinii in birds [25]. In North America,
B. burgdorferi sensu stricto is the main pathogenic genospecies
and is found in bothmammals and birds [26]. Hence, the circu-
lation in the ecosystem of pathogens causing Lyme borreliosis
differs markedly between the continents.

Lyme borreliosis is the most common vector-borne dis-
ease across temperate regions of the northern hemisphere
[27–30]. Over recent decades, there has been an increase in
both the number of Lyme borreliosis cases and the geo-
graphical distribution range, with emergence particularly
impacting northern latitudes and high-elevation regions in
North America and Europe [27,31–34]. Several studies have
investigated spatial disease trends and the environmental fac-
tors that influence regional disease risk [33–37]. For temporal
disease trends, empirical exploration of seasonality change
is restricted to cases in the USA [38–40]. However, as the
European and North American disease systems differ funda-
mentally due to contrasting hosts, pathogens and vectors, it is
necessary to consider these systems independently [41]. For
the European disease system, changes in Lyme borreliosis
seasonality have only been predicted by a mechanistic
model based on data from Scotland [42]. Our study is the
first in Europe to use surveillance data to explore changes
in the seasonality of Lyme borreliosis cases.

The goal of this study is to quantify changes in both the inci-
dence and seasonal timing of Lyme borreliosis cases at the
expanding northern distribution range in Europe. Lyme borre-
liosis surveillance data have been consistently reported in
Norway under uniform criteria since 1995, presenting an excel-
lent data source for this undertaking. Furthermore, Norway
comprises distinct ecoregions with differences in climate and
host composition, which allows for a unique opportunity to
compare disease seasonality in ecologically distinct areas uni-
fied under a single-surveillance umbrella. Changes in plant
phenology, described by spring greening measured from
satellite data using the Normalized Difference Vegetation
Index (NDVI), are used as a yardstick for interpreting the
magnitude of phenological responses to climate change in the
study area [9].
2. Methods
(a) Study area
Norway’s Lyme borreliosis surveillance data include cases
reported from the entire country, spanning a latitudinal range of
57°580–71°080 N [34,43]. For this analysis, cases reported at the
municipality scale were grouped into four biogeographical
regions, North, South, East and West (figure 1a), following desig-
nations from prior studies [25,34]. The four regions represent
contrasting ecosystems with marked differences in topography
and climate. TheWest region is separated from the East by amoun-
tain range and experiences a temperate maritime climate, in
contrast with the more continental climate of the East. The
region South is mild and humid [44]. Forest and species
composition also differ between regions [45]. Large mammal com-
munities in particular are different between regions, which has
especial importance for the vector life cycle [46]. The region West
is dominated by red deer (Cervus elaphus), while roe deer (Capreolus
capreolus) andmoose (Alces alces) aremost prominent in the regions
East and South. Generally, the same small mammal and avian host
species occur across the regions studied, though quantitative evi-
dence of differences in abundances and host importance between
regions remains limited [24,47].

Documented effects of climate change have been recorded
across Norway over the study period [48]. For the reference
period of 1979–2008, the annual mean temperature for mainland
Norway has increased by 0.5–0.6°C, with winter temperatures
increasing by about 1°C. The growing season, defined by the
numbers of days with a mean temperature above 5°C, has
increased by 1–2 weeks nationally, with the greatest increase in
the Western coastal regions. Annual precipitation has increased
in all regions, on average by 3% per decade, with the Western
region most impacted by increased precipitation. The precipi-
tation has primarily increased in the spring and decreased in
the autumn [48]. The streamflow during the spring has also
increased due to earlier snowmelt and earlier timing of snow-
melt-driven flooding events [48,49]. The snow season has
become shorter in most parts of mainland Norway, with reduced
annual snow depth and fewer days of snow cover [48]. Advance-
ment in spring plant phenology in response to climate change
has been documented [50,51].

(b) Lyme borreliosis surveillance data
Lyme borreliosis surveillance data has been collected by the
Norwegian Surveillance System for Communicable Diseases
(MSIS) since 1991, when it became mandatory for care providers
to report cases of positive diagnosis [52]. MSIS is curated and
administrated by the Norwegian Institute of Public Health. The
study period used for this analysis is from 1995 to 2019 because
consistent criteria for reporting cases of disseminated Lyme bor-
reliosis have been maintained over this time. A detailed account
of reporting criteria has been reported elsewhere [25,52]. The
only significant documented change in diagnostics over the
study period is the standardization of spinal fluid testing proto-
cols for children since 2011 [25]. Because of this change in testing
protocol and to reduce bias from health system effects, case
reports used for this study were restricted to patients over age
19. Cases were spatially localized to the region in which the
tick bite occurred when these data were available (ca 50% of
cases), otherwise the municipality in which the person resides
was used. If the location of bite was reported as outside of
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Figure 1. Key changes in the seasonal and long-term trends of Lyme borreliosis. (a) Map of Norway showing the regional aggregations used in this, and prior,
studies [25,34]. The statistical models are fitted to national data, as well as to the South, West and East regions independently. (b) The annual component from the
main model for Lyme borreliosis cases fitted to the national data (black) and to regional data for the South (blue), West (yellow) and East ( purple). The trends show
relative changes in average weekly case totals predicted for each year (relative case intensity). Because the intercept is not included, the trends are not comparable
on an absolute scale. (c) The shift in the week of peak spring vegetation greening, measured by NDVI. The points represent the week in which peak greening was
observed. The trendline is fitted from a linear model with a basis spline for year, with three degrees of freedom. (d ) Predicted peak weeks for Lyme borreliosis cases
from the main national model (black) and the regional models fitted to the South, West and East (blue, yellow and purple). Black points represent the annual peaks
from the national model, and the corresponding black vertical lines show the 95% credible intervals, quantified by repeated sampling from the posterior distribution.
The black curve with a shaded confidence interval is a basis spline with four degrees of freedom fitted to the predicted national peaks.
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Norway these cases were not included in the study. Case timing
is based on the date on which the patient went for diagnostic
testing, which is available for every case. This date will typically
occur several weeks after the tick bite, allowing time for
disseminated disease symptoms to have manifested [53].

(c) Normalized difference vegetation index
Changes in the seasonality of plant development were used as a
yardstick to contextualize the magnitude of temporal changes in
the seasonality of Lyme borreliosis cases. Plant development was
characterized using remote sensing NDVI satellite data to deter-
mine peak spring greening (when the rate of plant green-up is
fastest) each year from 1995 to 2019. NDVI data are a widely
used indicator of ecological responses to environmental change
[54]. Changes in plant phenology are not expected to affect the
timing of Lyme borreliosis cases directly, but are a useful point
of reference for exploring downstream effects of climate change.

NDVI images are produced from satellite instrumentation that
has been available from various sources since 1981 [55]. Moderate
Resolution Imaging Spectroradiometer (MODIS) data at 250m res-
olution have been available since 2000 andwere downloaded from
NASA Earthdata (https://urs.earthdata.nasa.gov/home) using
the ‘MODIStsp’ package in R [56]. For the first 5 years of the
study period (1995–2000), NDVI data from the Global Inventory
Modelling and Mapping Studies (GIMMS) at the 8 km resolution
scale were downloaded using the ‘gimms’ package in R [57].
MODIS andGIMMS data have been shown to be highly correlated
and suitable for making continuous time series [55]. The high cor-
relation (r > 0.9) was confirmed for this study by checking the years
2000–2005 in which data from both sources were available.

NDVI data were processed for areas below 200 m above sea
level in the West, East and South regions combined, to estimate a
yardstick that is on the national scale and relevant to areas in
which Lyme borreliosis is most common. The MODIS NDVI
images are collected once every 16 days, and the GIMMS NDVI
images every 15/16 days. All images were processed following
the procedures in Bischof et al. [58] and Rivrud et al. [59,60]. For
each image pixel, the NDVI over the study period was scaled (0–
1) and a double logistic regression curve was fitted annually

https://urs.earthdata.nasa.gov/home
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following Bischof et al. [58] and Rivrud et al. [59,60] to estimate a
continuous time series from which derivatives, e.g. rate of
change in green-up, start of spring, end of spring, and more,
can be calculated [58,60]. Further details on the processing and
modelling of NDVI data can be found elsewhere [58–60].

The day on which the rate of increase in greenness was at the
maximumwas used to determine the date of peak spring greening,
and the corresponding week number was then extracted to make
the data comparable to the Lyme borreliosis case data. A linear
regression using a basis spline with three degrees of freedom
was applied to visualize the change in peak spring greening over
the study period. The basis spline with three degrees of freedom
was selected for having the lowest Akaike information criterion
(AIC) in comparison with a linear model and more flexible splines
(see electronic supplementary material).
roc.R.Soc.B
290:20222420
(d) Statistical analysis
The statistical software R v.4.2.2 was used for all statistical
analyses [61]. The package INLA (http://www.r-inla.org) was
used to fit all models. INLA uses a method of Integrated
Nested Laplace Approximation to rapidly fit Bayesian models
[62]. The R script (reproducing all the results and figures) and
further details on the statistical analyses are available in the
electronic supplementary material.

The number of Lyme borreliosis cases per week was modelled
with a generalized linearmixedmodel (GLMM) including a flexible
seasonal component that allows for the separation of a yearly trend
and a seasonal trend. The number of cases yij inweek i (from 1 to 52)
and year j were assumed to follow a Poisson distribution,

yij � Poisson(lij), ð2:1Þ
where lij is the expected number of cases according to themodel. As
is standard for PoissonGLMMs,we used a logarithmic link function
(i.e. ln(lij) is a linear predictor). The model formulawas specified as
follows:

ln (lij) ¼ b0 þ ln (Nj)þ Yj þWij þ 1ij, ð2:2Þ
where b0 is the intercept, Yj is the year effect (modelled as a first-
order random walk), Wij is the seasonal effect (specified below),
ln(Nj) is the population offset and εij is a Gaussian random effect
used to account for overdispersion [63].

The population offset ln(Nj) is the logarithm of the total adult
population Nj in the region. This was included to account for any
changes in the number of observed cases due to changes in
population size. Including a population offset makes the log-
linear model equivalent to modelling the log of the expected
number of cases relative to the population size (i.e. ln(lij/Nj)).
Population size data were obtained on 25 January 2022 from Stat-
istics Norway, Population Count (https://www.ssb.no/en/
befolkning/folketall).

The main advantage of this model is its ability to separate the
yearly (Yj) and seasonal (Wij) components, so that changes in sea-
sonality can be isolated from long-term disease trends. The
modelling approach for the seasonal component was inspired by
an analysis of monthly registered cases of mumps in New York
City by Ruiz-Cárdenas et al. in 2012 [64]. The long-term trend
(Yj) is modelled as a first-order random walk (prior specified in
the electronic supplementary material). The seasonal component
is based on a periodic function, where the effect of week number
i in year j is given by

Wij ¼ bij sin
2p
52

� �
þ gij cos

2p
52

� �
, ð2:3Þ

where bij and gij are eachmodelledwith a first-order randomwalk
to make the seasonal effect of sequential weeks highly correlated,
and the constant factor 2p/52 defines the period in weeks within
year. This seasonal effect is smooth across the study period because
the parameters bij and gij vary slowly.

Using trigonometric identities, equation (2.3) above can be
rewritten as follows:

Wij ¼ Aij sin
2p
52

þ pij

� �
, ð2:4Þ

where Aij represents the amplitude (determined by A2
ij ¼

b2
ij þ g2ij), and pij represents the phase shift of the sinusoidal func-

tion (determined by tan( pij) = bij/gij). Importantly, the phase
shift in equation (2.4) uniquely identifies a peak week of each
year during which the number of Lyme borreliosis cases is at
the maximum predicted by the model. Thus, changes in case sea-
sonality over the study period can be quantified by extracting the
peak week for each year from the model. In total, this results in a
flexible seasonal component that can capture changes in season-
ality over time. Credible intervals (95%) for the annual seasonal
peaks were computed from 1000 samples from the posterior
model. Long-term trends in annual seasonal peaks were visual-
ized by fitting a basis spline with four degrees of freedom
using the ‘ggplot2’ package in tidyverse [65].

(e) Regional analysis
To compare regional differences in seasonality, the model
described above was fit to the South, West and East regions separ-
ately, aswell as to national data that includes all regions. TheNorth
region contained only few cases (approx. 5% of total cases) and
was not analysed separately. Fitting the models for each region
separately can reveal any differences between the regions in the
seasonality and long-term trends of cases and indicate if changes
in the geographical distribution of cases could underlie national
shifts in case timing. Regional models accounted for local adult
population offsets, using data obtained from Statistics Norway.

( f ) Model selection and alternative models
To determine whether case seasonality changed over the study
period, the main model described above was compared with
two alternative models with fixed seasonality across years. The
alternative models only differed from the main model in the con-
struction of the seasonal component. All models were fitted
using the national dataset for this comparison.

The first alternative model removed the flexibility of the seaso-
nal component by fixing the amplitude Aij and the phase pij in the
periodic function (equation (2.4)) so that they are the same each
year. An additional alternative model with an improved descrip-
tion of a fixed seasonality was modelled using a cyclic random
walk to fit a flexible spline with one knot per week [62,66]. This
improved alternative model has a closely tailored seasonal com-
ponent compared to the coarser sinusoidal seasonal model.
Comparing these models allowed us to determine whether a clo-
sely fit but fixed seasonal trend describes the data better than a
more coarsely fit but flexible seasonal trend that changes over time.

Comparison of the models was done through cross-validation
(see electronic supplementary material). A randomly selected 10%
of the data were removed before each model was refitted, and
model performance was compared across 10 repetitions. Prediction
quality was scored by root-mean-square error (RMSE), mean absol-
ute error (MAE) and the negative log-likelihood (NLL) [67].
Additionally, the deviance information criterion (DIC) score, as
given by INLA, was used as a metric for model comparison [68].
3. Results
The main model with a flexible seasonal trend that changes
across years demonstrated good fit throughout the study

http://www.r-inla.org
https://www.ssb.no/en/befolkning/folketall
https://www.ssb.no/en/befolkning/folketall
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Table 1. Model performance metrics from cross-validation and DIC for
comparing different candidate structures for the seasonality component. The
main model includes a flexible seasonal component, while the two
alternative models include a fixed seasonal component (see main text and
electronic supplementary material). The metrics used were RMSE, MAE, NLL
and DIC.

model RMSE MAE NLL DIC

main model 2.08 1.53 2560.5 5065.5

fixed cyclic

random walk

2.12 1.56 2589.6 5096.0

fixed sinusoidal 2.13 1.57 2599.2 5104.2
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period (figure 2; electronic supplementary material, figure S6)
and performedwell in cross-validation assessments (electronic
supplementary material, figure S16). The main model outper-
formed both alternative models with fixed seasonality on all
cross-validation metrics and using DIC (table 1), indicating
that there has been a shift in Lyme borreliosis case seasonality
over the study period (1995–2019). With the main model, we
were able to separately quantify year-to-year changes in the
number of cases and changes in within-year seasonality. The
main model’s parameters specifying the random effect distri-
butions are reported in the electronic supplementary
material, table S1. The seasonal component accounted for a
larger amount of the total variance than the year component,
highlighting the importance of including the seasonal trend
(electronic supplementary material, table S2). There was no
remaining temporal autocorrelation in the residuals (electronic
supplementarymaterial, figure S13). The unimodal seasonality
employed by the main model is supported by the cross-vali-
dation and through analysis of the residuals, which show
that the seasonality component of the main model is descrip-
tive across weeks within the year (electronic supplementary
material, figure S14). Thus, our findings support that the sea-
sonality of Lyme borreliosis cases in Norway is characterized
by a single main peak.

There was a clear national trend of increasing relative case
intensity over time (reflecting the year component of the main
model), with strong regional differences (figure 1b). While
nationally the average weekly cases have more than tripled
over the study period, there has only been a small increase
in the region South (figure 1b). This is in contrast with the
West, where in 2019 there were more than 10 times as
many cases than at the start of the study period. The region
South reported the majority of raw case counts in Norway
every year until 2010, when the West surpassed it in the
proportion of total cases reported annually. However,
throughout the study period, the South maintained the high-
est annual incidence (number of cases per 100 000 adults) due
to the much smaller population size relative to the other
regions (electronic supplementary material, figure S9). Stat-
istics describing trends in the raw data can be found in the
electronic supplementary material.

There was a distinct change in the seasonal timing of
Lyme borreliosis cases, characterized by an earlier shift in
the week in which case numbers peaked (figure 1d ). The
extent of the seasonal shift was around six weeks over the
25-year study period, averaging to a rate of change of
around 0.2 weeks per year. In the mid-1990s, the seasonal
peak was typically in late October, while in 2018 it was in
early September. Most of the seasonal shift occurred in the
first 10 years of the study period, after which the peaks
have been more stable. This is illustrated in figure 1d,
where the trend line fitted to annual peaks is a basis spline
with four degrees of freedom, which had a lower AIC than
a linear model (difference of 7.8). No regional differences in
the seasonal shift over the study period were observed.
Each regional model exhibited the same overall pattern as
the national model, and all regional peaks were within
the credible intervals of the national model (electronic
supplementary material, figures S11 and S12).
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The shift in case seasonality outpaced the NDVI yard-
stick, which showed a shift towards an earlier peak spring
greening of around three weeks over the study period
(figure 1c). As with case timing, no regional differences in
the NDVI trend were observed. Although the shift in NDVI
was less pronounced than the shift in Lyme borreliosis
cases, both had a similar overall trend with a rapid shift in
the first 10 years and then a stabilization for the rest of the
study period.
/journal/rspb
Proc.R.Soc.B

290:20222420
4. Discussion
Climate change is expected to impact the dynamics and geo-
graphical extent of vector-borne diseases, but simultaneous
disease emergence and changing seasonality have rarely
been quantified. Lyme borreliosis exhibits a highly seasonal
incidence pattern and high sensitivity to environmental con-
ditions, making it an interesting case study for exploring
changes in seasonality. By applying a statistical model frame-
work that explicitly accounts for seasonality in long-term
surveillance data, we provide the first empirical evidence
supporting a marked shift in Lyme borreliosis seasonality
accompanying disease emergence and major climatic changes
in northern latitudes of Europe.

Alteration of seasonality is a critical pathway by which
climate change can affect ecosystem dynamics [69,70].
Changes in the seasonality of Lyme borreliosis cases were
consistent between ecoregions of Norway (figure 1d ), despite
major regional differences in the species composition of large
vertebrate hosts. All regions share the same tick vector,
indicating that changes in vector phenology are likely an
important driver of the observed patterns of Lyme borreliosis
cases. Lyme borreliosis infections have been shown to peak in
synchrony (with a lag) with high activity levels of nymphal
ticks [38,39,42]. Ticks have the capacity for rapid modifica-
tion of their questing activity and stage durations on the
individual scale, yielding high plasticity in their life-history
responses to environmental drivers [23,71–73]. The findings
in this study support the intuitive effect of warmer springs
shifting the Lyme borreliosis season earlier.

It has been hypothesized that warmer spring weather
could potentially lead to increased nymphal tick activity in
autumn due to a shortened development cycle leading to a
second annual peak of the nymph stage [23,38,74,75]. A
mechanistic model based on data from Scotland predicted
increased incidence rates and a lengthening of the Lyme bor-
reliosis season, but small changes in seasonality that varied
between regions, with some regions having an earlier shift
and other regions having a later shift in seasonality [42].
Our empirical analysis found only a consistent earlier shift
in Lyme borreliosis cases in Norway, across all ecoregions.
Both unimodal and bimodal distributions of tick questing
activity levels have been observed in Europe, typically with
a strong spring activity peak and, in some regions, a
second, smaller autumn activity peak [76,77]. In Norway,
tick activity data are limited to one study site in the Western
region, where it was found that tick questing levels peaked in
early summer (May–June), and only in some years, there was
also a small activity peak in early autumn [64]. We found no
evidence for a later secondary peak of Lyme borreliosis cases
(electronic supplementary material, figures S1 and S13).
This is consistent with findings in Denmark, where tick
activity levels are reported to have a bimodal pattern while
human Lyme borreliosis cases have a unimodal distribution
[78–81]. These findings suggest that the seasonal pattern of
Lyme borreliosis cases is driven by processes other than
tick activity levels alone. In Norway, pathogen prevalence
in small mammal hosts has been found to be consistently
higher in spring than in fall, while pathogen prevalence in
questing ticks is seasonally variable across years [24,34].
Human activity patterns may also lead to variable exposure
across seasons.

The shift in Lyme borreliosis seasonality observed in this
study far exceeds the magnitude of change observed in the
USA [38,40]. An empirical study of Lyme borreliosis cases
over a similar time period (1992–2007) across 12 U.S. states
found that warmer southern states had an earlier seasonal
onset than colder northern states [38]. However, there was
high inter-annual variability in timing of cases and no consist-
ent shift in seasonality [38]. The value of using a yardstick has
been highlighted when comparing quantitative estimates of
phenology [9]. For this study, NDVI was selected because it
is a well-developed index for the onset of plant growth [54].
The seasonal shift in Lyme borreliosis cases documented here
paralleled the shift in the onset of plant growth but with
a larger magnitude of shift (figure 1c,d). The difference in
magnitude of shift between peak spring greening and Lyme
borreliosis case timing highlights that there are likely differ-
ences in the climatic drivers of these two manifestations of
climate change. Empirical evidence suggests that several
species of arthropods are highly sensitive to climate change
and can show more rapid phenological shifts than plants and
vertebrates [9,82]. It remains a gap in current understanding
of tick biology towhat extent tick stage durations are controlled
by photoperiod or temperature [83,84]. The rapid seasonal shift
observed in this study suggests that photoperiod has a limited
effect on tick emergence from winter diapause, and that
climatic drivers, such as increasingly warm spring tempera-
tures and shifts in spring moisture levels and snow melt,
primarily drive the tick life cycle.

Alternative or additional explanations for the rapid shift in
seasonality of Lyme disease cases other than changes in tick
vector phenology cannot be excluded. Phenological changes
have also been documented in many host species linked to
the Lyme borreliosis disease system, such as onset of the deer
calving season [85,86] and the timing of migration and repro-
duction of birds [87]. Migratory birds play an important role
in the Lyme borreliosis disease system [47,88], but whether
changes to avian host phenology can drive themarked changes
in Lyme borreliosis disease seasonality remains unclear.
Changes to the healthcare system could underlie unexpected
epidemiological patterns observed over long study periods. It
is possible that improvements to health technologies and
increased disease awareness among physicians and the
public may have contributed to some of the seasonality shift
observed over the study period by hastening the speed of diag-
nosis for patients with Lyme borreliosis. However, there is
currently no documented evidence of any systemic and consist-
ent social or health system change that would significantly
impact speed of diagnostics over the study period.

Interestingly, the majority of the seasonal shift in cases in
Norway took place preceding a period of rapid increase in
case numbers and geographical range expansion (figure 1b,
d). While we cannot document a causal relationship, the
increased incidence may have been facilitated by the
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preceding shift in seasonality. There are many potential
mechanisms by which a shift in seasonality could increase
disease incidence. For example, warmer spring weather
could reduce critical mortality periods for immature ticks
emerging from winter diapause [23,84,89,90]. Warmer
springs also could increase synchrony between larval and
nymphal stages, thereby changing pathogen transmission
profiles and shifting the seasonality of Lyme borreliosis risk
in accordance with changes in vector stage timing [20,26,91].

This study provides quantitative evidence demonstrating
seasonality changes in a vector-borne disease. Further
research is needed to isolate the ecological drivers of season-
ality and how phenological changes in birds, mammals and
arthropods combine to impact pathogen circulation and, in
turn, human disease risks.

Ethics. The project was approved by the Regional Committee for
Medical and Health Research Ethics (REK sør-øst B; Reference 115365).
Data accessibility. The data files and code are submitted with the
manuscript as electronic supplementary material.

The data are provided in the electronic supplementarymaterial [92].

Authors’ contributions. A.G.: formal analysis, investigation, methodology,
visualization, writing—original draft and writing—review and edit-
ing; H.V.: formal analysis, investigation, methodology, supervision,
validation, visualization and writing—review and editing; I.M.R.:
investigation, methodology, visualization and writing—review and
editing; S.J.: conceptualization, resources, supervision and writ-
ing—review and editing; H.B.: methodology and writing—review
and editing; Y.V.: conceptualization, funding acquisition, project
administration, supervision, validation, visualization and writing—
review and editing; A.M.: conceptualization, funding acquisition,
project administration, supervision and writing—review and editing.

All authors gave final approval for publication and agreed to be
held accountable for the work performed therein.

Conflict of interest declaration. The authors declare no competing interests.

Funding. The project is funded through the University of Oslo (PhD
grant) and the Research Council of Norway (project TimeLyme,
313286).
B
290:202
References
22420
1. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D,
Gittleman JL, Daszak P. 2008 Global trends in
emerging infectious diseases. Nature 451, 990–993.
(doi:10.1038/nature06536)

2. Gallana M, Ryser-Degiorgis MP, Wahli T, Segner H.
2013 Climate change and infectious diseases of
wildlife: altered interactions between pathogens,
vectors and hosts. Cur. Zool. 59, 427–437. (doi:10.
1093/czoolo/59.3.427)

3. Ogden NH. 2017 Climate change and vector-borne
diseases of public health significance. FEMS
Microbiol. Lett. 364, fnx186. (doi:10.1093/femsle/
fnx186)

4. Rogers D, Randolph S. 2006 Climate change and
vector-borne diseases. Adv. Parasitol. 62, 345–381.
(doi:10.1016/S0065-308X(05)62010-6)

5. Semenza JC, Suk JE. 2018 Vector-borne diseases
and climate change: a European perspective. FEMS
Microbiol. Lett. 365, fnx244. (doi:10.1093/femsle/
fnx244)

6. Shukla PR et al. (eds) 2022 Climate Change 2022:
Mitigation of Climate Change. Working Group III
Contribution to the IPCC Sixth Assessment
Report. Cambridge, UK & New York, NY: Cambridge
University Press. (doi:10.1017/9781009157926)

7. Medlock JM, Leach SA. 2015 Effect of climate
change on vector-borne disease risk in the UK.
Lancet Infect. Dis. 15, 721–730. (doi:10.1016/
S1473-3099(15)70091-5)

8. Menzel A et al. 2006 European phenological
response to climate change matches the warming
pattern. Glob. Change Biol. 12, 1969–1976. (doi:10.
1111/j.1365-2486.2006.01193.x)

9. Visser ME, Both C. 2005 Shifts in phenology due to
global climate change: the need for a yardstick.
Proc. R. Soc. B 272, 2561–2569. (doi:10.1098/rspb.
2005.3356)

10. Visser ME, Gienapp P. 2019 Evolutionary and
demographic consequences of phenological
mismatches. Nat. Ecol. Evol. 3, 879–885. (doi:10.
1038/s41559-019-0880-8)
11. Williams JW, Ordonez A, Svenning JC. 2020
A unifying framework for studying and
managing climate-driven rates of ecological change.
Nat. Ecol. Evol. 5, 17–26. (doi:10.1038/s41559-020-
01344-5)

12. Kharouba HM, Wolkovich EM. 2020 Disconnects
between ecological theory and data in phenological
mismatch research. Nat. Clim. Change 10, 406–415.
(doi:10.1038/s41558-020-0752-x)

13. Stenseth NChr, Mysterud A. 2002 Climate, changing
phenology, and other life history traits: nonlinearity
and match-mismatch to the environment. Proc. Natl
Acad. Sci. USA 99, 13 379–13 381. (doi:10.1073/
pnas.212519399)

14. Tougeron K, Brodeur J, Lann CL, Baaren J. 2019
How climate change affects the seasonal ecology of
insect parasitoids. Ecol. Entomol. 45, 167–181.
(doi:10.1111/een.12792)

15. Kovats RS, Campbell-Lendrum DH, McMichel AJ,
Woodward A, Cox J. 2001 Early effects of climate
change: do they include changes in vector-borne
disease? Phil. Trans. R. Soc. Lond. Ser. B 356,
1057–1068. (doi:10.1098/rstb.2001.0894)

16. Ogden NH, Lindsay LR. 2016 Effects of climate and
climate change on vectors and vector-borne
diseases: ticks are different. Trends Parasitol. 32,
646–656. (doi:10.1016/j.pt.2016.04.015)

17. White ER, Hastings A. 2020 Seasonality in ecology:
progress and prospects in theory. Ecol. Complexity
44, 100867. (doi:10.1016/j.ecocom.2020.100867)

18. Altizer S, Dobson A, Hosseini P, Hudson P, Pascual
M, Rohani P. 2006 Seasonality and the dynamics of
infectious diseases. Ecol. Lett. 9, 467–484. (doi:10.
1111/j.1461-0248.2005.00879.x)

19. Fisman DN. 2007 Seasonality of infectious diseases.
Annu. Rev. Public Health 28, 127–143. (doi:10.
1146/annurev.publhealth.28.021406.144128)

20. Altizer S, Ostfeld RS, Johnson PTJ, Kutz S, Harvell
CD. 2013 Climate change and infectious diseases:
from evidence to a predictive framework. Science
341, 514–519. (doi:10.1126/science.1239401)
21. Johnson PTJ, de Roode JC, Fenton A. 2015 Why
infectious disease research needs community
ecology. Science 349, 1259504. (doi:10.1126/
science.1259504)

22. Gulia-Nuss M et al. 2016 Genomic insights into the
Ixodes scapularis tick vector of Lyme disease. Nat.
Commun. 7, 10507. (doi:10.1038/ncomms10507)

23. Grigoryeva LA, Shatrov A. 2022 Life cycle of the tick
Ixodes ricinus (L.) (Acari: Ixodidae) in the North-
West of Russia. Syst. Appl. Acarol. 27, 538–550.
(doi:10.11158/saa.27.3.11)

24. Mysterud A, Stigum VM, Linløkken H, Herland A,
Viljugrein H. 2019 How general are generalist
parasites? The small mammal part of the Lyme
disease transmission cycle in two ecosystems in
northern Europe. Oecologia 190, 115–126. (doi:10.
1007/s00442-019-04411-2)

25. Mysterud A, Heylen DJA, Matthysen E, Garcia AL,
Jore S, Viljugrein H. 2019 Lyme neuroborreliosis and
bird populations in Northern Europe. Proc. R. Soc. B
286, 20190759. (doi:10.1098/rspb.2019.0759)

26. Kurtenbach K, Hanincová K, Tsao JI, Margos G, Fish
D, Ogden NH. 2006 Fundamental processes in the
evolutionary ecology of Lyme borreliosis. Nat. Rev.
Microbiol. 4, 660–669. (doi:10.1038/nrmicro1475)

27. Rizzoli A, Hauffe HC, Carpi G, Vourc’h GI, Neteler M,
Rosà R. 2011 Lyme borreliosis in Europe.
Eurosurveillance 16, 19906. (doi:10.2807/ese.16.27.
19906-en)

28. Stone BL, Tourand Y, Brissette CA. 2017 Brave new
worlds: the expanding universe of Lyme disease.
Vector-Borne Zoonotic Dis. 17, 619–629. (doi:10.
1089/vbz.2017.2127)

29. Estrada-Peña A, Ayllón N, de la Fuente J. 2012
Impact of climate trends on tick-borne pathogen
transmission. Front. Physiol. 3, 64. (doi:10.3389/
fphys.2012.00064)

30. Vandekerckhove O, Buck ED, Wijngaerden EV. 2019
Lyme disease in Western Europe: an emerging
problem? A systematic review. Acta Clin. Belg. 76,
244–252. (doi:10.1080/17843286.2019.1694293)

http://dx.doi.org/10.1038/nature06536
http://dx.doi.org/10.1093/czoolo/59.3.427
http://dx.doi.org/10.1093/czoolo/59.3.427
https://doi.org/10.1093/femsle/fnx186
https://doi.org/10.1093/femsle/fnx186
http://dx.doi.org/10.1016/S0065-308X(05)62010-6
http://dx.doi.org/10.1093/femsle/fnx244
http://dx.doi.org/10.1093/femsle/fnx244
http://dx.doi.org/10.1017/9781009157926
http://dx.doi.org/10.1016/S1473-3099(15)70091-5
http://dx.doi.org/10.1016/S1473-3099(15)70091-5
http://dx.doi.org/10.1111/j.1365-2486.2006.01193.x
http://dx.doi.org/10.1111/j.1365-2486.2006.01193.x
http://dx.doi.org/10.1098/rspb.2005.3356
http://dx.doi.org/10.1098/rspb.2005.3356
http://dx.doi.org/10.1038/s41559-019-0880-8
http://dx.doi.org/10.1038/s41559-019-0880-8
http://dx.doi.org/10.1038/s41559-020-01344-5
http://dx.doi.org/10.1038/s41559-020-01344-5
http://dx.doi.org/10.1038/s41558-020-0752-x
https://doi.org/10.1073/pnas.212519399
https://doi.org/10.1073/pnas.212519399
http://dx.doi.org/10.1111/een.12792
http://dx.doi.org/10.1098/rstb.2001.0894
http://dx.doi.org/10.1016/j.pt.2016.04.015
http://dx.doi.org/10.1016/j.ecocom.2020.100867
http://dx.doi.org/10.1111/j.1461-0248.2005.00879.x
http://dx.doi.org/10.1111/j.1461-0248.2005.00879.x
http://dx.doi.org/10.1146/annurev.publhealth.28.021406.144128
http://dx.doi.org/10.1146/annurev.publhealth.28.021406.144128
http://dx.doi.org/10.1126/science.1239401
http://dx.doi.org/10.1126/science.1259504
http://dx.doi.org/10.1126/science.1259504
http://dx.doi.org/10.1038/ncomms10507
https://doi.org/10.11158/saa.27.3.11
http://dx.doi.org/10.1007/s00442-019-04411-2
http://dx.doi.org/10.1007/s00442-019-04411-2
http://dx.doi.org/10.1098/rspb.2019.0759
http://dx.doi.org/10.1038/nrmicro1475
http://dx.doi.org/10.2807/ese.16.27.19906-en
http://dx.doi.org/10.2807/ese.16.27.19906-en
http://dx.doi.org/10.1089/vbz.2017.2127
http://dx.doi.org/10.1089/vbz.2017.2127
http://dx.doi.org/10.3389/fphys.2012.00064
http://dx.doi.org/10.3389/fphys.2012.00064
http://dx.doi.org/10.1080/17843286.2019.1694293


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20222420

8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 A

pr
il 

20
23

 

31. Kugeler KJ, Schwartz AM, Delorey MJ, Mead PS,
Hinckley AF. 2021 Estimating the frequency of Lyme
disease diagnoses, United States, 2010–2018.
Emerg. Infect. Dis. 27, 616–619. (doi:10.3201/
eid2702.202731)

32. Jore S et al. 2011 Multi-source analysis reveals
latitudinal and altitudinal shifts in range of Ixodes
ricinus at its northern distribution limit. Parasit.
Vectors 4, 1–11. (doi:10.1186/1756-3305-4-84)

33. Ogden NH et al. 2008 Risk maps for range
expansion of the Lyme disease vector, Ixodes
scapularis, in Canada now and with climate
change. Int. J. Health Geogr. 7, 24. (doi:10.1186/
1476-072X-7-24)

34. Mysterud A, Easterday WR, Stigum VM, Aas AB,
Meisingset EL, Viljugrein H. 2016 Contrasting
emergence of Lyme disease across ecosystems. Nat.
Commun. 7, 11882. (doi:10.1038/ncomms11882)

35. Kjær LJ et al. 2019 Predicting and mapping
human risk of exposure to Ixodes ricinus nymphs
using climatic and environmental data, Denmark,
Norway and Sweden, 2016. Eurosurveillance 24,
1800101. (doi:10.2807/1560-7917.ES.2019.24.9.
1800101)

36. Ostfeld RS, Glass GE, Keesing F. 2005 Spatial
epidemiology: an emerging (or re-emerging)
discipline. Trends Ecol. Evol. 20, 328–336. (doi:10.
1016/j.tree.2005.03.009)

37. Mollalo A, Blackburn JK, Morris LR, Glass GE. 2017 A
24-year exploratory spatial data analysis of Lyme
disease incidence rate in Connecticut, USA.
Geospatial Health 12, 588. (doi:10.4081/gh.
2017.588)

38. Moore SM, Eisen RJ, Monaghan A, Mead P. 2014
Meteorological influences on the seasonality of
lyme disease in the United States. Am. J. Trop. Med.
Hyg. 90, 486–496. (doi:10.4269/ajtmh.13-0180)

39. Sundheim KM, Levas MN, Balamuth F, Thompson
AD, Neville DN, Garro AC, Kharbanda AB, Monuteaux
MC, Nigrovic LE. 2021 Seasonality of acute Lyme
disease in children. Trop. Med. Infect. Dis. 6, 196.
(doi:10.3390/tropicalmed6040196)

40. Monaghan AJ, Moore SM, Sampson KM, Beard CB,
Eisen RJ. 2015 Climate change influences on the
annual onset of Lyme disease in the United States.
Ticks Tick-Borne Dis. 6, 615–622. (doi:10.1016/j.
ttbdis.2015.05.005)

41. Marques AR, Strle F, Wormser GP. 2021 Comparison
of Lyme disease in the United States and Europe.
Emerg. Infect. Dis. 27, 2017–2024. (doi:10.3201/
eid2708.204763)

42. Li S, Gilbert L, Harrison PA, Rounsevell MDA. 2016
Modelling the seasonality of Lyme disease risk and
the potential impacts of a warming climate within
the heterogeneous landscapes of Scotland. J. R. Soc.
Interface 13, 20160140. (doi:10.1098/rsif.2016.0140)

43. Mysterud A, Jore S, Østerås O, Viljugrein H. 2017
Emergence of tick-borne diseases at northern
latitudes in Europe: a comparative approach. Sci.
Rep. 7, 1–12. (doi:10.1038/s41598-017-15742-6)

44. Qviller L, Grøva L, Viljugrein H, Klingen I, Mysterud
A. 2014 Temporal pattern of questing tick Ixodes
ricinus density at differing elevations in the coastal
region of western Norway. Parasit. Vectors 7, 1–12.
(doi:10.1186/1756-3305-7-179)

45. Abrahamsen J, Jacobsen N, Kalliola R, Dahl E,
Wilborg L, Påhlsson L. 1977 Naturgeografisk
regioninndeling av Norden. Nordiske Utredninger
Series B 34, 1–135.

46. Mysterud A, Qviller L, Meisingset EL, Viljugrein H.
2016 Parasite load and seasonal migration in red
deer. Oecologia 180, 401–407. (doi:10.1007/
s00442-015-3465-5)

47. Hasle G et al. 2009 Transport of ticks by migratory
passerine birds to Norway. J. Parasitol. 95,
1342–1351. (doi:10.1645/GE-2146.1)

48. Flæte O et al. 2010 Official Norwegian Reports NOU
2010: 10. Adapting to a Changing Climate. Oslo,
Norway: Norwegian Ministry of The Environment.
(https://www.regjeringen.no/en/dokumenter/nou-
2010-10-2/id668985/)

49. Vormoor K, Lawrence D, Schlichting L, Wilson D, Wong
WK. 2016 Evidence for changes in the magnitude and
frequency of observed rainfall vs. snowmelt driven
floods in Norway. J. Hydrol. 538, 33–48. (doi:10.1016/j.
jhydrol.2016.03.066)

50. Nordli Ø, Wielgolaski FE, Bakken AK, Hjeltnes SH,
Måge F, Sivle A, Skre O. 2008 Regional trends
for bud burst and flowering of woody plants in
Norway as related to climate change. Int. J.
Biometeorol. 52, 625–639. (doi:10.1007/s00484-
008-0156-5)

51. Karlsen SR, Høgda KA, Wielgolaski FE, Tolvanen A,
Tømmervik H, Poikolainen J, Kubin E. 2009
Growing-season trends in Fennoscandia 1982–2006,
determined from satellite and phenology data. Clim.
Res. 39, 275–286. (doi:10.3354/cr00828)

52. MacDonald E et al. 2016 Are the current notification
criteria for Lyme borreliosis in Norway suitable?
Results of an evaluation of Lyme borreliosis
surveillance in Norway, 1995–2013. BMC Public
Health 16, 729. (doi:10.1186/s12889-016-3346-9)

53. Coburn J, Garcia B, Hu LT, Jewett MW, Kraiczy P,
Norris SJ, Skare J. 2021 Lyme disease pathogenesis.
Curr. Issues Mol. Biol. 42, 473–518. (doi:10.21775/
cimb.042.473)

54. Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker
CJ, Stenseth NChr. 2005 Using the satellite-derived
NDVI to assess ecological responses to
environmental change. Trends Ecol. Evol. 20,
503–510. (doi:10.1016/j.tree.2005.05.011)

55. Pinzon J, Tucker C. 2014 A non-stationary 1981–
2012 AVHRR NDVI3g time series. Remote Sensing 6,
6929–6960. (doi:10.3390/rs6086929)

56. Busetto L, Ranghetti L. 2016 MODIStsp: an R
package for automatic preprocessing of MODIS Land
Products time series. Comput. Geosci. 97, 40–48.
(doi:10.1016/j.cageo.2016.08.020)

57. Detsch F. 2021 gimms: Download and Process
GIMMS NDVI3g Data. R package. Version 1.2.1.
(See https://www.researchgate.net/publication/
294891839_gimms_Download_and_Process_
GIMMS_NDVI3g_Data⤢Repl)

58. Bischof R, Loe LE, Meisingset EL, Zimmermann B,
Moorter BV, Mysterud A. 2012 A migratory northern
ungulate in the pursuit of spring: jumping or
surfing the green wave? Am. Nat. 180, 407–424.
(doi:10.1086/667590)

59. Rivrud IM et al. 2019 Heritability of head size in a
hunted large carnivore, the brown bear (Ursus
arctos). Evol. Appl. 12, 1124–1135. (doi:10.1111/
eva.12786)

60. Rivrud IM, Sivertsen TR, Mysterud A, Åhman B,
Støen OG, Skarin A. 2018 Reindeer green-wave
surfing constrained by predators. Ecosphere 9,
e02210. (doi:10.1002/ecs2.2210)

61. R Core Team. 2022 R: a language and environment
for statistical computing. Vienna, Austria: Foundation
for Statistical Computing.

62. Rue H, Martino S, Chopin N. 2009 Approximate
Bayesian inference for latent Gaussian models by
using integrated nested Laplace approximations.
J. R. Stat. Soc. Ser. B (Statistical Methodology)
71, 319–392. (doi:10.1111/j.1467-9868.2008.
00700.x)

63. Bakka H, Vanhatalo J, Illian JB, Simpson D, Rue H.
2019 Non-stationary Gaussian models with physical
barriers. Spatial Stat. 29, 268–288. (doi:10.1016/j.
spasta.2019.01.002)

64. Ruiz-Cárdenas R, Krainski ET, Rue H. 2012 Direct
fitting of dynamic models using integrated nested
Laplace approximations—INLA. Computat. Stat.
Data Analysis 56, 1808–1828. (doi:10.1016/j.csda.
2011.10.024)

65. Wickham H. 2016 Ggplot2: elegant graphics for data
analysis. New York, NY: Springer-Verlag.

66. Lindgren F, Rue H. 2015 Bayesian spatial modelling
with R-INLA. J. Stat. Softw. 63, 1–25. (doi:10.
18637/jss.v063.i19)

67. Jornsatian C, Bodhisuwan W. 2021 Zero-one inflated
negative binomial - beta exponential distribution
for count data with many zeros and ones. Commun.
Stat. Theory Methods 51, 8517–8531. (doi:10.1080/
03610926.2021.1898642)

68. Sutanto HT, Pramoedyo H, Wardhani WS, Astutik S.
2021 The selection of Bayesian polynomial
regression with INLA by using DIC, WAIC and CPO.
J. Phys Conf. Ser. 1747, 012029. (doi:10.1088/1742-
6596/1747/1/012029)

69. Parmesan C. 2006 Ecological and evolutionary
responses to recent climate change. Ann. Rev. Ecol.
Evol. Syst. 37, 637–669. (doi:10.1146/annurev.
ecolsys.37.091305.110100)

70. Stenseth NC, Mysterud A, Ottersen G, Hurrell JW,
Chan KS, Lima M. 2002 Ecological effects of climate
fluctuations. Science 297, 1292–1296. (doi:10.1126/
science.1071281)

71. Gray J, Kahl O, Zintl A. 2021 What do we still need
to know about Ixodes ricinus? Ticks Tick-borne Dis.
12, 101682. (doi:10.1016/j.ttbdis.2021.101682)

72. Gray JS, Kahl O, Lane RS, Levin ML, Tsao JI. 2016
Diapause in ticks of the medically important Ixodes
ricinus species complex. Ticks Tick-borne Dis. 7,
992–1003. (doi:10.1016/j.ttbdis.2016.05.006)

73. Estrada-Peña A, Gray JS, Kahl O, Lane RS, Nijhof
AM. 2013 Research on the ecology of ticks and tick-
borne pathogens—methodological principles and
caveats. Front. Cell. Infect. Microbiol. 3, 29. (doi:10.
3389/fcimb.2013.00029)

http://dx.doi.org/10.3201/eid2702.202731
http://dx.doi.org/10.3201/eid2702.202731
http://dx.doi.org/10.1186/1756-3305-4-84
http://dx.doi.org/10.1186/1476-072X-7-24
http://dx.doi.org/10.1186/1476-072X-7-24
http://dx.doi.org/10.1038/ncomms11882
http://dx.doi.org/10.2807/1560-7917.ES.2019.24.9.1800101
http://dx.doi.org/10.2807/1560-7917.ES.2019.24.9.1800101
http://dx.doi.org/10.1016/j.tree.2005.03.009
http://dx.doi.org/10.1016/j.tree.2005.03.009
http://dx.doi.org/10.4081/gh.2017.588
http://dx.doi.org/10.4081/gh.2017.588
http://dx.doi.org/10.4269/ajtmh.13-0180
http://dx.doi.org/10.3390/tropicalmed6040196
http://dx.doi.org/10.1016/j.ttbdis.2015.05.005
http://dx.doi.org/10.1016/j.ttbdis.2015.05.005
http://dx.doi.org/10.3201/eid2708.204763
http://dx.doi.org/10.3201/eid2708.204763
http://dx.doi.org/10.1098/rsif.2016.0140
http://dx.doi.org/10.1038/s41598-017-15742-6
http://dx.doi.org/10.1186/1756-3305-7-179
http://dx.doi.org/10.1007/s00442-015-3465-5
http://dx.doi.org/10.1007/s00442-015-3465-5
http://dx.doi.org/10.1645/GE-2146.1
https://www.regjeringen.no/en/dokumenter/nou-2010-10-2/id668985/
https://www.regjeringen.no/en/dokumenter/nou-2010-10-2/id668985/
https://doi.org/10.1016/j.jhydrol.2016.03.066
https://doi.org/10.1016/j.jhydrol.2016.03.066
https://doi.org/10.1007/s00484-008-0156-5
https://doi.org/10.1007/s00484-008-0156-5
https://doi.org/10.3354/cr00828
http://dx.doi.org/10.1186/s12889-016-3346-9
http://dx.doi.org/10.21775/cimb.042.473
http://dx.doi.org/10.21775/cimb.042.473
https://doi.org/10.1016/j.tree.2005.05.011
http://dx.doi.org/10.3390/rs6086929
http://dx.doi.org/10.1016/j.cageo.2016.08.020
https://www.researchgate.net/publication/294891839_gimms_Download_and_Process_GIMMS_NDVI3g_Data&#x2922;Repl
https://www.researchgate.net/publication/294891839_gimms_Download_and_Process_GIMMS_NDVI3g_Data&#x2922;Repl
https://www.researchgate.net/publication/294891839_gimms_Download_and_Process_GIMMS_NDVI3g_Data&#x2922;Repl
https://doi.org/10.1086/667590
http://dx.doi.org/10.1111/eva.12786
http://dx.doi.org/10.1111/eva.12786
http://dx.doi.org/10.1002/ecs2.2210
http://dx.doi.org/10.1111/j.1467-9868.2008.00700.x
http://dx.doi.org/10.1111/j.1467-9868.2008.00700.x
http://dx.doi.org/10.1016/j.spasta.2019.01.002
http://dx.doi.org/10.1016/j.spasta.2019.01.002
http://dx.doi.org/10.1016/j.csda.2011.10.024
http://dx.doi.org/10.1016/j.csda.2011.10.024
http://dx.doi.org/10.18637/jss.v063.i19
http://dx.doi.org/10.18637/jss.v063.i19
http://dx.doi.org/10.1080/03610926.2021.1898642
http://dx.doi.org/10.1080/03610926.2021.1898642
https://doi.org/10.1088/1742-6596/1747/1/012029
https://doi.org/10.1088/1742-6596/1747/1/012029
http://dx.doi.org/10.1146/annurev.ecolsys.37.091305.110100
http://dx.doi.org/10.1146/annurev.ecolsys.37.091305.110100
http://dx.doi.org/10.1126/science.1071281
http://dx.doi.org/10.1126/science.1071281
http://dx.doi.org/10.1016/j.ttbdis.2021.101682
http://dx.doi.org/10.1016/j.ttbdis.2016.05.006
https://doi.org/10.3389/fcimb.2013.00029
https://doi.org/10.3389/fcimb.2013.00029


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20222420

9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 A

pr
il 

20
23

 

74. Ogden N, Lindsay L, Beauchamp G, Charron D,
Maarouf A, O’callaghan C, Waltner-Toews D, Barker
I. 2004 Investigation of relationships between
temperature and developmental rates of tick Ixodes
scapularis (Acari: Ixodidae) in the laboratory and
field. J. Med. Entomol. 41, 622–633. (doi:10.1603/
0022-2585-41.4.622)

75. Kilpatrick AM et al. 2017 Lyme disease ecology in a
changing world: consensus, uncertainty and critical
gaps for improving control. Phil. Trans. R. Soc. B
372, 20160117. (doi:10.1098/rstb.2016.0117)

76. Wongnak P et al. 2022 Meteorological and climatic
variables predict the phenology of Ixodes ricinus
nymph activity in France, accounting for habitat
heterogeneity. Sci. Rep. 12, 1–16. (doi:10.1038/
s41598-022-11479-z)

77. Hauser G, Rais O, Morán Cadenas F, Gonseth Y,
Bouzelboudjen M, Gern L. 2018 Influence of climatic
factors on Ixodes ricinus nymph abundance and
phenology over a long-term monthly observation in
Switzerland (2000–2014). Parasit. Vectors 11,
1–12. (doi:10.1186/s13071-018-2876-7)

78. Skufca J et al. 2022 Incidence of Lyme
neuroborreliosis in Denmark: exploring observed
trends using public surveillance data, 2015–2019.
Ticks Tick-borne Dis. 13, 102039. (doi:10.1016/j.
ttbdis.2022.102039)

79. Jensen P. 2000 Host seeking activity of Ixodes ricinus
ticks based on daily consecutive flagging samples.
Exp. Appl. Acarol 24, 695–708. (doi:10.1023/
a:1010640219816)
80. Jensen PM, Frandsen F. 2000 Temporal risk
assessment for Lyme borreliosis in Denmark. Scand.
J. Infect. Dis. 32, 539–544. (doi:10.1080/
003655400458848)

81. Kantsø B, Svendsen CB, Jensen PM, Vennestrøm J,
Krogfelt KA. 2010 Seasonal and habitat variation in
the prevalence of Rickettsia helvetica in Ixodes
ricinus ticks from Denmark. Ticks Tick-Borne Dis. 1,
101–103. (doi:10.1016/j.ttbdis.2010.01.004)

82. Parmesan C. 2007 Influences of species, latitudes
and methodologies on estimates of phenological
response to global warming. Glob. Change Biol.
13, 1860–1872. (doi:10.1111/j.1365-2486.2007.
01404.x)

83. Ostfeld RS, Brunner JL. 2015 Climate change and
Ixodes tick-borne diseases of humans. Phil.
Trans. R. Soc. B 370, 20140051. (doi:10.1098/rstb.
2014.0051)

84. Dobson AD, Finnie TJ, Randolph SE. 2011 A
modified matrix model to describe the seasonal
population ecology of the European tick Ixodes
ricinus. J. Appl. Ecol. 48, 1017–1028. (doi:10.1111/j.
1365-2664.2011.02003.x)

85. Coulson T, Kruuk L, Tavecchia G, Pemberton J,
Clutton-Brock T. 2003 Estimating selection on
neonatal traits in red deer using elasticity path
analysis. Evolution 57, 2879–2892. (doi:10.1111/j.
0014-3820.2003.tb01528.x)

86. Plard F, Gaillard JM, Coulson T, Hewison AM,
Delorme D, Warnant C, Bonenfant C. 2014
Mismatch between birth date and vegetation
phenology slows the demography of roe deer. PLoS
Biol. 12, e1001828. (doi:10.1371/journal.pbio.
1001828)

87. Visser ME, Noordwijk AV, Tinbergen J, Lessells C.
1998 Warmer springs lead to mistimed reproduction
in great tits (Parus major). Proc. R. Soc. Lond. B
265, 1867–1870. (doi:10.1098/rspb.1998.0514)

88. Hasle G, Bjune GA, Midthjell L, Red KH, Leinaas HP.
2011 Transport of Ixodes ricinus infected with
Borrelia species to Norway by northward-migrating
passerine birds. Ticks Tick-borne Dis. 2, 37–43.
(doi:10.1016/j.ttbdis.2010.10.004)

89. Van Gestel M, Matthysen E, Heylen D, Verheyen K.
2022 Survival in the understorey: testing direct and
indirect effects of microclimatological changes on
Ixodes ricinus. Ticks Tick-borne Dis. 13, 102035.
(doi:10.1016/j.ttbdis.2022.102035)

90. Herrmann C, Gern L. 2013 Survival of Ixodes ricinus
(Acari: Ixodidae) nymphs under cold conditions is
negatively influenced by frequent temperature
variations. Ticks Tick-Borne Dis. 4, 445–451. (doi:10.
1016/j.ttbdis.2013.05.002)

91. Levi T, Keesing F, Oggenfuss K, Ostfeld RS. 2015
Accelerated phenology of blacklegged ticks under
climate warming. Phil. Trans. R. Soc. B 370,
20130556. (doi:10.1098/rstb.2013.0556)

92. Goren A, Viljugrein H, Rivrud IM, Jore S, Bakka H,
Vindenes Y, Mysterud A. 2023 The emergence and
shift in seasonality of Lyme borreliosis in Northern
Europe. Figshare. (doi:10.6084/m9.figshare.c.
6414112)

http://dx.doi.org/10.1603/0022-2585-41.4.622
http://dx.doi.org/10.1603/0022-2585-41.4.622
http://dx.doi.org/10.1098/rstb.2016.0117
https://doi.org/10.1038/s41598-022-11479-z
https://doi.org/10.1038/s41598-022-11479-z
https://doi.org/10.1186/s13071-018-2876-7
https://doi.org/10.1016/j.ttbdis.2022.102039
https://doi.org/10.1016/j.ttbdis.2022.102039
https://doi.org/10.1023/a:1010640219816
https://doi.org/10.1023/a:1010640219816
https://doi.org/10.1080/003655400458848
https://doi.org/10.1080/003655400458848
https://doi.org/10.1016/j.ttbdis.2010.01.004
http://dx.doi.org/10.1111/j.1365-2486.2007.01404.x
http://dx.doi.org/10.1111/j.1365-2486.2007.01404.x
http://dx.doi.org/10.1098/rstb.2014.0051
http://dx.doi.org/10.1098/rstb.2014.0051
https://doi.org/10.1111/j.1365-2664.2011.02003.x
https://doi.org/10.1111/j.1365-2664.2011.02003.x
http://dx.doi.org/10.1111/j.0014-3820.2003.tb01528.x
http://dx.doi.org/10.1111/j.0014-3820.2003.tb01528.x
http://dx.doi.org/10.1371/journal.pbio.1001828
http://dx.doi.org/10.1371/journal.pbio.1001828
https://doi.org/10.1098/rspb.1998.0514
https://doi.org/10.1016/j.ttbdis.2010.10.004
https://doi.org/10.1016/j.ttbdis.2022.102035
https://doi.org/10.1016/j.ttbdis.2013.05.002
https://doi.org/10.1016/j.ttbdis.2013.05.002
http://dx.doi.org/10.1098/rstb.2013.0556
http://dx.doi.org/10.6084/m9.figshare.c.6414112
http://dx.doi.org/10.6084/m9.figshare.c.6414112

	The emergence and shift in seasonality of Lyme borreliosis in Northern Europe
	Introduction
	Methods
	Study area
	Lyme borreliosis surveillance data
	Normalized difference vegetation index
	Statistical analysis
	Regional analysis
	Model selection and alternative models

	Results
	Discussion
	Ethics
	Data accessibility
	Authors' contributions
	Conflict of interest declaration
	Funding
	References


