Ehrlich et al. Environmental Health (2023) 22:19 Environmental Health
https://doi.org/10.1186/512940-022-00958-5

REVIEW Open Access

. . ®
Consideration of pathways s

for immunotoxicity of per- and polyfluoroalkyl
substances (PFAS)

Veronika Ehrlich!, Wieneke Bil?, Rob Vandebriel?, Berit Granum*, Mirjam Luijten?, Birgitte Lindeman?,
Philippe Grandjean>®, Andreas-Marius Kaiser', Ingrid Hauzenberger', Christina Hartmann',
Claudia Gundacker” and Maria Uhl"™

Abstract

Background Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous
and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic
properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In
2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical
effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar
effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers
PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mecha-
nisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of
the immune system functions have been reported in the literature.

Objective The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mecha-
nisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoen-
hancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-kB and PPARs; ii) alteration of
calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress
and v) impact on fatty acid metabolism & secondary effects on the immune system.

Methods A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which
were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publica-

tions were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms
of PFAS induced immunotoxicity are discussed.

Conclusions Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental
as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of
the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to
toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life.
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Introduction

Exposure to environmental toxicants, such as per- and
polyfluoroalkyl substances (PFAS), can lead to substantial
adverse effects on the immune system.

PFAS are a diverse group of chemicals, recently defined
by the Organisation for Economic Co-operation and
Development (OECD) as any fluorinated substance
that contains at least one fully fluorinated methyl or
methylene carbon atom without any hydrogen, chlo-
rine, bromine, or iodine atom attached to it [1] consist-
ing of thousands of individual compounds. Due to their
amphipathic (hydrophilic and hydrophobic) properties,
PFAS have been used in a wide range of applications and
products for many decades [2, 3]. All PFAS are either
intrinsically extremely persistent by or are transformed
into extremely persistent ones in the environment [4]
or within mammals [5, 6]. In addition, several PFAS
have been proven to be bio-accumulative and toxic [7].
Although PFAS have been used commercially since the
1950s, particular concern about potential adverse human
health effects grew in the early 2000s with the detection
of considerable levels of perfluorooctanoic acid (PFOA)
and perfluorooctanesulfonic acid (PFOS) in human blood
and wildlife. Both substances are the most studied PFAS
so far.

In 2016, the National Toxicology Program (NTP)
of the US Department of Health and Human Services
concluded that PFOA and PFOS are presumed to be
immune hazards in humans based on strong evidence
showing suppression of antibody responses from vacci-
nations in experimental animals and moderate evidence
for suppression of antibody responses in humans [8].
Whilst PFOA and PFOS may both suppress the anti-
body response thereby exerting overlapping types of
immunotoxicity, there are some differences. In addition
to the suppression of antibody response, PFOS poten-
tially suppresses natural killer (NK) cell function and
might reduce disease resistance whereas, PFOA might
also increase hypersensitivity [8]. In 2021, the US Agency
for Toxic Substances and Disease Registry (ATSDR)
reported that not only PFOA and PFOS, but also per-
fluorohexane sulfonic acid (PFHxS) and perfluorodeca-
noic acid (PFDA) serum concentrations are associated
with a decreased antibody response to vaccines, as sug-
gested by epidemiological evidence. Furthermore, there
is limited evidence for perfluorononanoic acid (PFNA),
perfluoroundecanoic acid (PFUnDA), and perfluorodo-
decanoic acid (PFDoDA) for similar associations [9]. The
European Food Safety Authority (EFSA) performed their
risk assessment on the same health effects (reduced anti-
body response to vaccination in one-year-old children)
on the sum of PFOA, PFNA, PFHxS and PFOS. A toler-
able weekly intake (TWI) of 4.4ng/kg body weight per
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week was derived [10]. Further, human studies published
after EFSA’s scientific opinion reported an increased
risk of infectious diseases, such as lower respiratory
tract infections, thereby lending further support for the
immunosuppressive effects of PFAS [11, 12]. However,
a full understanding of the molecular mechanisms lead-
ing to PFAS-induced immunotoxicity has not yet been
established due to various reasons. Particularly, the use
of many different methods and models to investigate
various types of immune responses for single members of
the PFAS family have provided only mechanistic insights
but not the complete picture. That being said, a lack of
known mechanism(s) of immunotoxicity is not a requi-
site for setting exposure limits (e.g. for drinking water).
Like EFSA, the U.S. Environmental Protection Agency
(EPA) currently considers to use PFAS-induced immu-
notoxicity, especially in children, as the critical effect for
risk assessment. The EPA defined interim updated health
advisory values for drinking water for PFOS, PFOA,
GenX chemicals (hexafluoropropylene oxide (HFPO)
dimer acid and its ammonium salt) and PFBS (per-
fluorobutane sulfonate) which are even lower than EFSA’s
TWI [13].

Major difficulties in evaluating health effects related
to exposure to environmental toxicants often include
insufficient mechanistic understanding and thus limits
causal inference. Furthermore, current data requirements
requested as part of a chemical legislative framework
such as the REACH regulation do not align with the
demands for assessing all key aspects of the immune
system and its development [14]. Thus, due to a lack
of evidence, many substances causing (developmen-
tal) immune effects may currently remain unnoticed in
human hazard and health risk assessments, even though
the developing immune system is a highly sensitive target
for toxicity of environmental chemicals [14]. Critical win-
dows of immune system development represent age-spe-
cific periods of prenatal and early postnatal development
where irreversible maturational events of the immune
system occur, such as seeding of peripheral tissues with
lymphocytes or clonal selection of thymocytes in the
thymus. Disruption or perturbation at these critical
junctures can potentially result in both immediate and
long-term adverse health effects in the developing child
as well as the adult [15, 16]. Dynamic changes in the peri-
natal period before and just after birth include the basic
maturation and distribution of immune cell types, and
selection against autoreactive lymphocytes. In the peri-
natal period, the immune balance must change from pro-
tecting the foetus from immune-mediated miscarriage
towards the ability to combat childhood diseases [17].
Substances like PFOA and PFOS can cross the placental
barrier [18, 19], and have been detected in umbilical cord
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blood, breast milk and plasma samples of breastfed tod-
dlers, indicating that maternal transfer occurs pre- and
postnatally [9, 10]. It was estimated, that the median daily
intake of the sum of PFOA, PENA, PFHxS and PFOS for
European infants and toddlers via food ranged from 0.84
to 12.2ng/kg body weight per day at the lower bound
(LB) and from 38.5 to 115ng/kg body weight per day at
the upper bound (UB), whereas the values for older age
groups (adolescents, adults, elderly, very elderly) ranged
from 0.42 to 3.1ng/kg body weight per day at LB and
from 11.4 to 41.5ng/kg bw/day at UB. Given the early-life
exposures, the effects of PFAS on the developing immune
system are highly relevant for human health risk assess-
ment [10, 20].

A recent example of the recognition of the vulnerability
of the developing immune system as a target for toxicity
is the draft opinion on health risks related to the presence
of bisphenol A (BPA) in foodstuffs, proposing to lower
the tolerable daily intake (TDI) for BPA by a factor of
100,000 [21]. The proposed TDI is based on an increase
in T-helper 17 (Th17) cells, which are pivotal in cellular
immune mechanisms and, among others, involved in
the development of allergic lung inflammation and other
inflammatory tissue responses.

Due to the various concerns related to PFAS, a num-
ber of policy measures have been taken for certain PFAS,
such as inclusion in the International Stockholm Con-
vention on POPs [22], regulatory measures under the
REACH legislation of the European Union including the
proposal for a wide-range restriction for all PFAS [23,
24]. Also, the overarching objectives of the Chemicals
Strategy for Sustainability and the zero-pollution ambi-
tion under the European Green Deal address the restric-
tion of use of PFAS [25].

Within the European Human Biomonitoring Initia-
tive HBM4EU (www.hbm4eu.eu), human biomonitor-
ing (HBM) studies in Europe have been collected and
coordinated to address policy questions related to expo-
sure, health effects and risks of various groups of chemi-
cals, including PFAS. In this context, we conducted this
review, with the aim to explore and describe PFAS-
associated effects on immune function and the potential
mechanisms involved.

Methods

A systematic literature research was conducted using
three databases (Web of Science, PubMed, and Scopus),
which were manually searched in June and July 2021 for
relevant studies published in the time frame from 2018
to 2021. Two keyword combinations (see Fig. 1) were
used repeatedly, including the chemical name (i.e., per-
fluor*, polyfluor*, PFAS, PFBS, PFHxS, PFOS, PFBA,
PFHxA, PFOA, PENA, PFDA, PFUnDA, PFDoDA,
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HFPO-DA and GenX - corresponding to keyword A
in Fig. 1) and the effect (e.g., immune*, asthma, apop-
tosis, NF-kB, PPAR, TDAR, ... - corresponding to key-
word B in Fig. 1). For the publications identified, titles
and abstracts were manually screened, and publications
considered out of scope (i.e., articles that did not con-
tain any toxicological or epidemiological information
concerning PFAS and immunotoxicity) were excluded.
In total, 487 publications were identified as poten-
tially eligible and tabulated. More details on the litera-
ture search are provided in Table 1 in Appendix. The
information retrieved was subsequently reviewed by
the authors and has been used for the present review
based on expert judgement. Selection of the scientific
papers for inclusion or exclusion was based on consid-
eration of the extent to which the study was relevant to
the mechanism of immunotoxicity of PFAS and gen-
eral study quality considerations. Studies published
in abstract form only (grant awards and conference
abstracts) were not included. In addition, key studies
already published before 2018 are discussed.

When deemed relevant, studies before 2018 were
collected from existing literature reviews (NTP,
ATSDR and EFSA) [8-10] for possible inclusion in
the respective sections, to provide a complete picture
on the potential mechanistic aspects of PFAS-induced
immunotoxicity.

Epidemiological studies

Separate literature searches on effects on the immune
system in humans were performed in August 2021
(Medline) and January 2022 (PubMed) to retrieve
papers not included in the EFSA opinions on PFAS
[10, 26], as well as papers published after July 2019 for
the 27 PFASs included in the EFSA 2020 Opinion [10].
Table 2 in Appendix lists details for search criteria for
epidemiological studies. After the first screening of
titles and abstracts, a total of 19 publications were iden-
tified as potentially eligible (inclusion criteria: human
studies reporting on immune outcomes; exclusion cri-
teria: not original paper, poster or congress abstract,
and case studies). These publications were evaluated
based on study design (ranking: randomised con-
trolled trials (RCT), longitudinal observational studies,
case-control studies, cross-sectional studies), blinding
procedures in RCTs, the reporting of outcomes, popu-
lation size and choice of study population, and statis-
tics (power analysis, statistical methods, confounders).
Finally, an evaluation was performed on whether the
new studies strengthened or weakened the conclusions
made by EFSA in 2020 [10] and if data on additional
PFAS followed the same patterns.
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Scopus
(2018-2021)

!

Keyword B

O

1328 articles

o= )

Removed: 100 duplicates or not relevant

1

Removed: 1095 duplicates or not relevant

Removed: 2 duplicates or not relevant

1

[ 487 articles from 2018 — 2021 regarding links between PFAS and immunotoxicity ]

Fig. 1 lllustration of the literature research. Figure Legend: For details on the search terms, please see Table 1 in Appendix

Results

Knowledge on immunomodulatory effects of PFAS

from epidemiological studies

This section aims to give an overview on the known
effects in humans, sections 3-7 (Effect on key cell popu-
lations relevant for antibody production and cytokine
modulation ff) provide a deeper mechanistic insight into
immunotoxicity caused by PFAS.

EFSA has published two opinions on PFAS exposure
and human health, covering exposure to 25 different
PFAS [10, 26]. Several studies on vaccination responses
were reviewed [27-35]. Overall, different PFAS meas-
ured at different developmental stages showed statisti-
cally significant inverse relations to vaccination specific
antibody responses across the studies. After EFSA’s
report from 2020, three new studies on vaccination
responses [36—38], and a systematic review on PFAS
and vaccination response have been published [39]. Due
to different study designs, there appear to be some dif-
ferences between studies, but they all report inverse
trends between PFAS levels and vaccine antibody levels,
hence supporting EFSA’s conclusion. Taken together,
the studies show the strongest associations in children,
although findings in adults are also notable, especially

in temporal relation to a vaccination booster [31]. Given
that substantial changes in serum-PFAS concentra-
tions during and after the breastfeeding period have
been observed, the time of exposure seems to be impor-
tant [10]. Also, van Beijsterveld and co-workers report
median plasma levels in >200 Dutch infants at age 3
months (during breastfeeding: 3.080 [1.97-4.44] ng/ml
for PFOA and 1.829 [1.26-2.89] ng/ml for PFOS) and
at age 2 years (after breastfeeding) 2.360 [1.57-3.28]
PFOA and 1.667 [1.04-2.34] PFOS), and confirm that
breastfeeding is an early exposure pathway of PFOA and
PFOS [40].

Most studies suggest that prenatal PFAS exposure is
strongly related to an immune deficit, but early postnatal
exposure may also be of importance, as is the cumulative
exposure to PFAS at the time of vaccination [28].

When it comes to the effects of PFAS exposure on
common infectious diseases, reported findings on upper
respiratory tract and gastrointestinal infections were
inconsistent. However, the evidence for an increased risk
of lower respiratory tract infections (LRTI) is stronger.
Overall, three studies have reported a lack of asso-
ciation between PFAS exposure and LRTI [34, 41, 42],
potentially due to imprecise exposure assessment, while
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five prospective studies have reported positive associa-
tions [12, 43-46]. Additionally, three further studies on
COVID-19, where the most affected organ is the lung,
observed a positive association between PFAS exposure
and confirmed COVID-19 cases (incidence and severity)
[47-49].

Studies on asthma show no or inconsistent associa-
tions with PFAS exposure in children or young adults.
In prospective studies, only very few statistically signifi-
cant findings have been reported, but the type of PFAS
and the direction of the response varies between the
studies [35, 42—-45, 50-53]. However, six cross-sectional
studies reported an increased risk of asthma [44, 50,
54-57], whereas two further studies did not observe any
statistically significant associations [32, 58]. It can be
hypothesised that the increased risk of asthma seen in
the cross-sectional studies may reflect an exacerbation
of pre-existing disease, while PFAS may play a minor role
in disease development. One study showed an increased
risk of PFAS-associated asthma in children who had not
received the MMR vaccination, thus suggesting a pos-
sible cofactor [59]. For PFOS and PFOA, EFSA stated,
that epidemiological studies provide insufficient evi-
dence to conclude on associations between exposure to
PFAS and asthma [10]. From investigations conducted
in the context of HBM4EU, linking human biomonitor-
ing and health effects, the association between PFAS
exposure and asthma was also not considered consist-
ent across studies [60]. In addition, due to too few stud-
ies and inconsistent findings, no conclusion can be drawn
with regard to the effect of PFAS exposure on lung func-
tion, atopic dermatitis, rhinitis, and allergic sensitisation
(measured as serum IgE levels or in skin prick tests).

Repeated dose toxicity and immunotoxicity studies

in animals

This section provides an overview of functional immu-
notoxicity tests in experimental animals, as well as stud-
ies that investigated the resting immune system; sections
3-7 provide a deeper mechanistic insight into immuno-
toxicity caused by PFAS. Twenty-three functional immu-
notoxicity studies and 14 studies that investigated the
resting immune system are discussed in this section. Of
these studies, eight are from our literature review (2018
and newer, see Methods) in addition to the discussion
of the immunotoxicity studies already published before
2018.

Functional assays with laboratory animals provide
direct evidence for immunosuppression upon exposure
to PFAS, specifically by showing decreases in the T-cell
dependent and independent antibody responses (TDAR
and TIAR), and decreased disease resistance in host
infection studies.
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TDAR assays are used by regulatory agencies for the
evaluation of the immunotoxic potential of pharmaceu-
ticals and chemicals, as they are a robust and sensitive
method and provide a functional readout of B-cells,
T-helper cells as well as monocytes as antigen present-
ing cells [61]. A growing number of studies demon-
strate that a positive response in the TDAR in exposed
experimental animals is predictive of immunotoxicity
in humans [62], with the analogous human response
being antibodies generated towards a specific vaccine.

Table 3 in Appendix lists functional immunotox-
icity studies (TDAR,TIAR, host resistance and lym-
phoproliferative response studies) performed with
PFAS in rodents, with a focus on recent studies (since
2018). Dose-dependent decreases in serum IgM and/
or IgG concentrations were seen in most studies for
PFOA [63-69], PFOS [64, 70-75], hexafluoropropyl-
ene oxide-dimer acid (HFPO-DA) [76], and an aque-
ous film-forming foam (AFFF) mixture with serum
concentrations of C5-C10 PFAS, including chlorin-
ated polyfluorooctane sulfonate (CI-PFOS) [77], but
not in all studies [78-81]. For PFDA [82], PFHxS [80],
and perfluoro-2-methoxyaacetic acid (PFMOAA),
perfluoro-3-methoxypropanoic acid (PFMOPrA) and
perfluoro(4-methoxybutanoic) acid (PFMOBA) [79], no
changes in serum concentrations of immunoglobulins
(IgMs, IgGs) were observed, although in Ramhgj [80]
and Woodlief et al. [79] the positive controls (cyclo-
phosphamide and PFOA, respectively) were also nega-
tive; therefore, these study outcomes were considered
inconclusive.

Furthermore, the results obtained from a host infec-
tion study for PFOS [83] indicate immunosuppression,
but another study was negative [81], as was the case for
a study with PFDA [82]. Nevertheless, in cases where
serum IgM or IgG levels were not impacted, other effects
such as changes in specific cell populations in lymphoid
organs [81] or alterations in lymphoid organ weights [82]
were observed.

Experimental animal studies that investigated the
resting immune system indicate that it is a relevant tar-
get for PFAS-induced toxicity. Immunological altera-
tions include decreased lymphoid organ weights for
PFBS [84, 85], PFOS [84], PFHxA (perfluorohexanoic
acid) [86, 87], PFOA, PFNA, PFDA [86], PFUnDA [88],
and PFDoDA [89], alterations in thymic and splenic
lymphocyte subpopulations for PFOA [90], PFOS
[90-92], and PENA [93, 94], atrophy of the thymus
and the spleen for PFBS [84], PFHxA [95], PENA [86,
96, 97], and PFDA [82, 86], increased hypocellularity
of the bone marrow for PFBS [84], PFOS [84], PFOA
[86], PENA [86], and PFDA [86] and atrophy of the
mandibular and mesenteric lymph nodes for PFNA
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[86]. Although such parameters are only indicative
and should not be used to conclude on immunotoxic-
ity without considering the performance of functional
tests, they add to the weight of evidence for PFAS-
induced immunotoxicity [14].

In summary, the main body of TDAR studies with
PFOA and PFOS demonstrates a robust pattern of find-
ings to support PFOA- and PFOS-associated immuno-
suppression, although negative results also have been
reported. The heterogeneity in the data can partly be
explained by differences in the antibody response by
species (mice vs. rats), outcome (primary vs. secondary
response), and study protocol (dosing regime, exposure
duration). Rats appear to be less susceptible (probably
due to more rapid clearance) than mice to PFAS-associ-
ated antibody suppression. There is less data available on
other PFAS and replacement products, but the outcomes
of the TDAR studies available showed those PFAS were
less potent or non-responsive, although in some studies
the positive controls were negative. For some PFAS, such
as PFBS, PFHxA, PFNA, PFUnDA, and PFDoDA, no
TDAR studies have been performed at all, although trig-
gers for immunotoxicity have been observed in repeated-
dose experiments that warrant further functional testing
according to the IPCS/WHO (International Programme
on Chemical Safety by the World Health Organization)
Guidance Document [14].

Effect on key cell populations relevant for antibody
production and cytokine modulation

Effects on cytokine release

The NTP (2016) described evidence that PFOS exposure
was associated with a shift of cytokine balance away from
Th1 cytokines (reduced secretion of IL-2 and INF-y) and
towards Th2 cytokines (increased secretion of IL-4) in
mice exposed to higher doses (0.833 to 20 mg/kg/day).
However, given the heterogeneity in study design, tissues,
and cell populations investigated, it is difficult to evalu-
ate whether or not there is a clear or consistent pattern
for changes in these cell signalling molecules after expo-
sure to PFOA or PFOS and the evidence was described as
“inconclusive and variable” [8].

The effects of PFAS on cytokine homeostasis in
humans and experimental animals remains poorly under-
stood. In a TDAR study with mice exposed to PFOA an
overall reduction of Th2 cytokines (significant: IL-5 and
IL-13; non-significant: IL-4), a mixed response for Thl
cytokines (significant reduction of IL-12 and non-signif-
icant increase in IL-2 and IFN-y) were observed by De
Guise and Levin. This showed a favourable Thl balance
and a general decrease in pro-inflammatory cytokines
(IL-17a, IL-1o: non-significant, IL-6 and a significantly
increased TNF-a). The authors postulate a potential role
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for T helper (Th) cells in the immunotoxicity of PFOA
[63]; study design is described in Table 3 in Appendix.

In a human study [98], 21 PFAS were identified in
198 Chinese women of childbearing age. In single PFAS
models, PFAS were positively associated with Thl and
regulatory T-cell (Treg) cytokines, and negatively associ-
ated with Th2 and Th17 cytokines. The Bayesian Kernel
Machine Regression (BKMR) model showed a signifi-
cantly positive association of PFAS mixture with TGF-$
and a negative association with IL-10. A deviation of the
immune system from Th2 toward Thl has been impli-
cated in pregnancy complications, such as recurrent
miscarriage, preeclampsia and foetal growth restriction.
It should however be noted, that the effect of PFAS on
cytokine homeostasis in humans is poorly understood
[34, 55, 99-101]. Nian and co-workers point out, that evi-
dence so far has been inconsistent, as also positive corre-
lations between PFAS and Th2 cytokines in humans were
shown [98].

In conclusion, in line with the conclusion made by
Nian et al. [98], inconsistencies in the effects on Th1/
Th2 cytokine levels exist between various studies. Unfor-
tunately, there are no studies that identify the specific
cell types involved or link the cytokine changes to the
suppression of the antibody response. These cytokines
have multiple physiological roles and may reflect inflam-
mation rather than changes in antibody-related cell
signalling.

Modulation of key cell populations - epidemiological studies
Immunophenotyping is a commonly used tool in immu-
notoxicity testing in animal studies and for evaluating
drugs in clinical trials. One publication by Dong and co-
workers [54] showing positive association between serum
eosinophil counts among asthmatic cases across and
PFAS concentrations in children is mentioned in previ-
ous reports of immunotoxic effects of PFAS by NTP and
EFSA [8, 10]. An additional four epidemiological stud-
ies describe associations between PFAS exposure and
peripheral white blood cell (WBC) counts [34, 102-104].
Two of these publications were identified in the litera-
ture update on epidemiological data [34, 104], and two
earlier publications were added based on expert knowl-
edge [102, 103]. The study by Oulhote et al. prospectively
examined 56 children to determine associations between
exposures to five persistent PFAS (PFOS, PFOA, PFHXxS,
PFNA, PFDA) since birth and the differential counts of
WBCs [102]. Higher 18-month and 5-year PFAS concen-
trations were associated with increased basophil counts
in the children at age 5years.

Knudsen and co-workers [103] investigated the asso-
ciation between the sum of 15 PFAS and haematologi-
cal markers in 189 Greenlandic pregnant women. The
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markers investigated included white blood cells, lym-
phocytes, neutrophils and monocytes, which were sig-
nificantly inversely associated with the sum of PFAS
suggesting an immunosuppressive potential of PFAS in
pregnancy. However, as the blood samples of the women
were taken in different trimesters and due to the physi-
ological changes in immune cell concentrations during
pregnancy, these findings need confirmation.

In the study by Abraham and co-workers (also
described in section Knowledge on immunomodulatory
effects of PFAS from epidemiological studies), associa-
tions between PFAS and several immune cell parameters
in 1-year-old children following vaccination against Hae-
mophilus influenza type b, tetanus and diphtheria were
determined [34]. No changes in white blood cells counts
or in main lymphocyte populations or CD4/CD8 cell
ratios were associated with the PFAS measured. How-
ever, a positive association between PFOA and two phe-
notypic subpopulations (CD45RO+ CD45RA-; CD27-)
among CD8+ T-cells was suggested. In lymphocytes
stimulated ex vivo with tetanus or diphtheria toxoid a
reduced IFNy production was associated with increased
plasma PFOA levels. A similar PFOA associated reduc-
tion in IFNy was not observed in response to the general
immune stimulant PHA, suggesting an effect specific
tothese vaccine antigens.

In the study by Lopez-Espinosa and co-workers, asso-
ciations were described between PFAS exposure and
peripheral WBC counts in a human population in the
Mid-Ohio Valley, USA with drinking water exposure to
PFOA and background exposure to other PFAS [104]. In
this study, PFAS were positively associated with absolute
lymphocyte count and the counts of T-cells, B-cells, and
natural killer (NK) cells. However, no significant associa-
tions were reported for changes in the percentages of B,
Th and Tc lymphocyte subsets. The strongest associa-
tion with lymphocyte counts was seen for PFHxS and to
a lesser degree PFOS followed by PFOA. No significant
association with changes in CD4/CD8 ratios was found
for these three PFAS.

Modulation of key cell populations - animal studies

This section discusses evidence available before 2018
(i.e. 11 studies), and two more recent studies (2018 and
newer), were identified by our literature research (see
Methods). In animals exposed to PFAS, changes in lym-
phocyte subpopulations have been reported, but the
data shows variability in the changes observed between
sexes, and across studies. In the NTP 28-day rat stud-
ies reported above [84, 86], haematological analysis
suggested some dose-dependent changes in leukocyte
counts. The most consistent observation was a reduction
in eosinophils in both males and females. Reductions in
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total leukocytes and neutrophils in males were observed
for PFOS and PFNA. In mice, a reduced number of thy-
mocytes and/or splenic lymphocytes is reported in sev-
eral studies following exposures to PFOS and PFOA [64,
65, 70-72, 93, 105, 106]. A decreased number of bone
marrow B-lymphoid cells in response to PFOA exposure
(0.002% w/w in diet) and PFOS (0.02% w/w in diet) has
also been reported [107]. Based on data from a study
by Dong and co-workers, a reduced TDAR response
appears to be a more sensitive endpoint than reductions
in splenic and thymic cellularity [72]. Furthermore, the
reported direction of change, if any, in lymphocyte sub-
sets varies between studies and sex.

In a developmental mouse study, splenic Treg numbers
were reduced at the highest dose (2mg/kg bw/day) and
isolated CD4+ cells from adult offspring, exposed via
the dams to PFOA during gestation and through wean-
ing, secreted lower amounts of the immunosuppressive
cytokine IL-10 than cells from controls in males only
[108]. Gestational exposure (GD 1-17) to PFOS (5 mg/kg
bw/day) led to a reduced number of thymic CD4+ cells
in 8-week-old male offspring [74].

In conclusion, animal studies show that some PFAS,
including PFOS and PFOA, can reduce splenic and
thymic cellularity and levels of circulation WBCs. The
few epidemiological studies that enumerate WBC sub-
classes examine different human populations and are
insufficient to give a clear picture of potential effects on
immune cell phenotypes of PFAS exposure levels relevant
to humans.

Modulation of nuclear receptors / cell signalling
Considering that gene expression is rarely dependent on
a sole transcription factor, and that cross-talk between
various transcription factors is known to widely occur,
PFAS effects in rodents are probably a result of mul-
tiple interlinked pathways [109]. The EFSA panel [10]
reviewed transactivation of several nuclear receptors,
as observed from in vivo and in vitro studies, including
PPARs (peroxisome proliferator-activated receptors),
NF-kB (nuclear factor kappa B), CAR (constitutive acti-
vated receptor), Nrf2 (nuclear factor erythroid 2-related
factor 2), PXR (pregnane X receptor) and RXR (retinoid
X receptor). Although some of these nuclear receptors
may have an indirect effect on immune health, the follow-
ing sections were focussed on the modulation of NF-xB
and PPARs. This selection was made because of the inter-
actions of NF-xB and PPARs with the immune system,
and data on other nuclear receptors are less conclusive.

Modulation of NF-kB regulated gene transactivation
NF-«B is found in almost all human and animal cell types
and known to be involved in cellular responses to stimuli
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such as stress, cytokines, free radicals, heavy metals,
ultraviolet irradiation, oxidized low density lipoprotein
(LDL), and bacterial or viral antigens [110]. NF-kB sig-
nalling coordinates not only adaptive and innate immune
responses but is also involved in the regulation of apop-
tosis. Depending on the context, NF-«B triggers either
pro- or anti-apoptotic pathways and is thus involved in
the decision of whether a cell may survive or die.

Once activated, NF-kB can induce the transcrip-
tion of various genes and thereby regulate inflamma-
tion. NF-«kB targets inflammation not only directly by
increasing the production of inflammatory cytokines
(e.g. IL-1, IL-2, IL-6, IL-8, IL-12, TNF-a), chemokines
(e.g. MCP-1, IL-18, RANTES, MIP-2, CXCL],
CXCL10) and adhesion molecules (e.g. ICAM-1,
VCAM-1, ECAM-1, MMPs), but also by regulating cell
proliferation, apoptosis, morphogenesis, and differen-
tiation [110].

A total of 27 experimental studies dealing with the
modulation of NF-xB by PFAS. Of these, 21 studies
showed activation of NF-«B, two studies inhibition
of LPS-induced NF-kB activation, whereas one study
showed opposite effects in high dose and low dose
ranges, and three studies did not show any impact on
NEF-kB. Of the 27 studies listed, 11 studies originated
from our literature research (see Methods) in addi-
tion to the discussion of the studies already published
before 2018.

Table 4 in Appendix lists experimental stud-
ies reporting the modulation of NF-kB by PFAS.
The majority of studies were performed with PFOA
(n =13) and PFOS (n =12), and much less with other
PFAS members, where PFDA and PFNA were tested in
three studies, and PFBS, fluorotelomer (i.e., perfluo-
rooctyl-ethanol- (8:2 telomer)), PFUnDA and PFHpA
only in one study each. In contrast to the other PFAS
studied, PENA did not modulate NF-kB activity in any
of the studies reported [93, 94, 111].

Lee and co-workers [111] suggest that the chain
length determines the outcome, since PFDA (C10) and
PFUnDA (C11) caused an increase in NF-«B activity,
while the compounds PFNA (C9) and PFHpA (C7) had
no effect on NF-kB activity. In zebrafish, higher doses
of PFOA caused an increase in NF-«kB activity while
lower doses had an inhibitory effect [112].

In conclusion, the body of evidence indicates that in
experimental studies most PFAS tested induce NF-«B,
although contradictory effects have been observed. It
may be possible to explain these discrepancies by the
experimental model used, although there are indica-
tions that chain length and dosing schedule have an
influence. Caution must be taken when interpreting
rodent in vivo data in the case of PFAS, since next to
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higher exposure levels in rodents, exposure duration
may also be divergent, i.e. several decades for humans
versus several (2—-14) weeks for animals [109]. Fur-
thermore, in vitro data using (non-human) cell types
not from immune lineages are not ideal for detecting
effects as NF-kB and cytokine modulation.

Involvement of PPARs

Based on our literature review (see Methods) 13 studies
were identified as relevant for this section. Peroxisome
proliferator-activated receptors (PPARs) are a family of
nuclear hormone receptors consisting of the three iden-
tified subtypes PPAR«a, PPARPB/S, and PPARy [113, 114].
They are expressed in various cells including those of the
immune system and they have been described to inter-
act with both the innate as well as the acquired immune
system [115]. An excellent overview of the general role
of PPARs concerning immune responses is provided by
Christofides et al. [114].

The EFSA Panel stated in their assessment that modu-
lation of PPARs may play a part in the immunotoxicity
of PFAS. Nevertheless, a detailed understanding of the
involvement of PPARs is lacking, and further research on
this topic is necessary [10]. We evaluated experimental
studies of recent years, which reported PPAR modula-
tion by PFAS. Table 5 in Appendix lists the experimen-
tal binding/agonistic effects of PFAS to all three PPAR
subtypes.

PPARa is a transcription factor that regulates lipid
catabolism and inflammatory responses [116] by for
example increasing the gene expression of enzymes
involved in B-oxidation (e.g. acyl-CoA oxidase and carni-
tine palmitoyl transferase 1 [117]). The NTP concluded
that PPAR« appears to play a role in several immune
effects of PFOA in mice, including decreased spleen and
thymus weight, reduced spleen and thymus cellularity,
and mitogen-induced lymphoproliferation at high doses
(30-40 mg/kg PFOA) [8]. However, many immune effects
of both PFOA and PFOS - particularly the suppression of
the antibody response in mice at lower doses (3.75mg/
kg PFOA) - are partially or wholly independent of
PPAR« [67] as is also demonstrated in PPARa knockout
mice [68]. Human hepatic PPAR« expression is roughly
one-tenth that of rodents [118], furthermore e.g. PFOA
activates human PPAR« with less potency than mouse
PPARa [119]. It has to be noted, that such comparative
calculations have not been performed for different cell
types or life stages and that this fact does not rule out
PPARa-induced in immune modulating effects of PFAS
in humans.

PPARPB/8 influences cell proliferation, glucose
metabolism and inflammation [116]. Its engagement
increases the expression of pyruvate dehydrogenase
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kinase-4 (PDK4) and carnitine palmitoyl transferase
1A (CPT1A), which in turn increases fatty acid oxi-
dation [117]. An association between increased risk
of common cold and PPARP/S expression in human
cord blood has been observed [120]. While stud-
ies reported that PFAS such as GenX [121] as well as
PFOS and chlorinated polyfluorinated ether sulfonates
(CI-PFAES) [122] can activate PPARB/S, downstream
molecular events affecting the immune system remain
unexplained.

PPARy has a wide variety of biological functions,
including the regulation of fatty acid synthesis and
storage, promotion of adipogenesis, glucose metabo-
lism, and inhibiting inflammatory signalling through
NF-kB [123, 124]. PPARy acts as a transcription fac-
tor for genes that contain PPAR response elements in
their promoters, including cyclooxygenase-2 (COX-
2) [125, 126]. The expression of PPARy in B cells is of
importance during both the primary and secondary
immune response [127]. Furthermore, it is a master
regulator for mast cells thereby playing an important
role in allergic inflammation [128]. It can increase the
adiponectin concentration and expression of glucose
transporters, such as GLUT1 and GLUT4 [117], which
affects the glycolytic metabolism and cellular metabo-
lism of T cells, respectively [129].

All PPAR isoforms are often co-expressed in develop-
ing tissues and organs (e.g., placenta) and the relative lev-
els vary between cell types [130]. Inappropriate activation
(i.e., increase or decrease) of one or more PPAR isoforms
during critical stages of development could influence the
healthy development of a child. The placenta for example
has various functions including foetal protection against
the maternal immune system and the synthesis of vari-
ous neurotransmitters and hormones [131]. Bogacka and
co-workers [132] discussed that PPARy-dependent inhi-
bition of various cytokines (e.g. IL-6, IL-1p and TNFa) in
the human placenta may influence the immune response
and immunotolerance but further studies on this field are
required.

Modulation of osteoimmunology (via PPARy) Bone is
potentially a significant target tissue of PFAS toxicity [20,
133-135]; six relevant studies were identified for this sec-
tion. Pérez et al. [136] detected 12 perfluoro alkyl acids
(PFAA, including PFCAs and PFSA with a carbon-chain
length between C4 and C16) in human rib bone samples
(m= 20) in Spain. PFOA and PFOS were present in all
(n= 18) and PFNA, PFDA, PFUnDA and PFHXxS in some
human bone samples investigated by Koskela et al. [133].
Further, Bodganska et al. [134] found PEBS in the bone
marrow of mice when they were orally exposed to PFBS
for 5 days.
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It is known that osteoclasts and osteoblasts express
PPARy [137] and there are indications that osteoclasts
have a major influence on the modulation of immune
responses towards immune suppression [138]. Osteo-
clasts are primarily known for their classical bone resorp-
tion activity but are rarely considered as possessing
immune functions. However, they have been shown to
be involved with immune regulation in the bone mar-
row [138]. According to Madel et al. [138] osteoclasts
have the capacity to activate T-cell responses and modu-
late T-cell activation, and they produce various cytokines
(IL-1B, IL-6, IL-10, TGF-p and TNFa) that affect immune
responses as well. PPARy potentially plays an important
role in the production of those cytokines [138], but it is
speculative to which extent PFAS may influence immu-
nological functions via this pathway.

Another study [139] reported that the activation of
PPARy in bone marrow suppresses osteoblast and bone
formation, and promotes adipocyte differentiation. Con-
tinuous activation of PPARYy via its agonists can promote
adipogenesis and fatty-acid storage [140], and possibly
initiate abnormal bone cell development. An imbalance
of osteoclasts and osteoblasts (“bone marrow failure”)
can contribute to immune deficiencies and increase the
risk of infections [141, 142]. Since the bone marrow is a
primary hematopoietic and immune-regulatory organ
that probably is exposed to a large variety of PFAS, we
hypothesise that PFAS may influence the immune sys-
tem at least partially via osteoclasts and osteoblasts
imbalances in a PPARy dependent manner. However,
since current observations are rather inconclusive, fur-
ther research on the potential influence of PFAS on bone
health and its association with immune responses is
recommended.

Impact on fatty acid metabolism and secondary effect
on the immune system PFOA and PFOS may indi-
rectly affect the immune system by interfering with lipid
metabolism (reviewed by Liang et al. [20]). The authors
state that PFOA causes lipid metabolism disorders at
least partly via the PPARa pathway, while the mechanism
of PFOS-induced interference is not clear.

As mentioned above, there are indications that various
PFAS can activate all three PPAR isoforms (see Table 5
in Appendix), which are implicated in regulation of lipid
metabolism and/or fatty acid (FA) synthesis and oxida-
tion. The synthesis vs. oxidation of FA has been related
to differences in the immune response. FA synthesis is
implicated in inflammatory and effector T-cell (Th1, Th2,
Th17) responses, while FA oxidation is involved in anti-
inflammatory (M2 macrophages), tolerogenic, and CD8-+
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memory T-cell responses [143]. This difference is also
seen at the level of proinflammatory vs. immunosuppres-
sive cytokines. It might therefore be suggested that the
effects of PFAS on FA metabolism may affect pro- vs. anti-
inflammatory, and effector vs. regulatory T-cell responses.

A link between FA synthesis and immune function is also
shown in the work of Wen et al. [144], who found that the
saturated FA palmitate induces NLRP3 (NOD-, LRR- and
pyrin domain-containing protein 3) inflammasome acti-
vation. This results in the production of the pro-inflam-
matory cytokines IL-1f and IL-18, and in case of chronic
activation potentially can be linked to the development
of diseases such as type-2 diabetes. Further, adipocyte
secretion may affect immune responses, and it is there-
fore of interest that developmental PFAS exposures seem
to be associated with changes in serum-adipokine con-
centrations [145].

Conclusion on potential PPAR modulation Many stud-
ies have demonstrated that PFAS have agonistic effects
on human PPARa, PPARB/S and PPARY (see Table 5 in
Appendix) and that PPARa and PPARY are more respon-
sive to PFAS exposure compared to PPARPB/8 which
shows weak activity in response to PFAS exposure [146].
An inverse U-shaped relationship between the carbon
chain-length of perfluorocarboxylic acids (PFCAs) and
the PPARy transcriptional activity was observed by Li
et al. and Zhang et al. [147, 148]. However, study out-
comes are inconsistent depending on the cell type and
model used.

While PFAS may influence the immune system at least
partially via PPARs, the exact mechanisms remain
largely unclear. Possible mechanisms include modula-
tion of downstream signalling, such as NF-kB, impact
on bone marrow (via PPARy), and modulation of FA
metabolism by all three isoforms and thereby causing
a secondary effect on the immune system by tipping it
towards inflammation or a suppressed immune response.
However, the role of PPARs in the reduced vaccination
response in children caused by PFAS is not clear. Accord-
ing to AbdelMassih and co-workers, PPAR agonists (e.g.
thiazolidinedione) even have the potential to improve
immune responses after vaccination [127]. The response
of the immune system after PPAR activation could be
either positive or negative, depending on the PPAR ago-
nist type and its concentration. Furthermore, crosstalk
from other (nuclear) receptors and variations in down-
stream signalling add to the complexity of the mecha-
nisms involved.
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Modulation of calcium signalling

Calcium (Ca?") signalling, spatial and temporal fluc-
tuation of intracellular Ca®* levels, plays a major role in
regulating cell functions including innate and adaptive
immune responses. In lymphocytes, increases in cyto-
solic and organellar Ca*" concentrations control crucial
effector functions, such as metabolism, proliferation, dif-
ferentiation, antibody and cytokine secretion and cyto-
toxicity. Therefore, Ca’>" is of paramount importance to
immunity, and altered Ca*" regulation in immune rel-
evant cells leads to various autoimmune, inflammatory
and immunodeficiency syndromes [149-151]. Immune
cell types like macrophages, neutrophils, NK cells, den-
dritic cells and mast cells are dependent on tightly con-
trolled calcium signalling for their activation and effector
functions like degranulation, cytokine release, phagocy-
tosis, cytotoxicity, ROS production and inflammasome
activation [152].

Disturbance of Ca®" homeostasis is well known for
environmental immunotoxic pollutants like dioxins
(such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin, TCDD)
or polycyclic aromatic hydrocarbons (PAHs) [153]. The
immunosuppressive PAHs benzola]pyrene (BaP) and
dimethylbenz[a]anthracene increased intracellular cal-
cium levels in human lymphocytes and monocytes [154,
155]. Proposed mechanisms included the inhibition of
the sarcoplasmic reticulum Ca*"-ATPase (SERCA) activ-
ity [154], interaction with the ryanodine receptor (RyR1)
and protein tyrosine kinases activation mediated by BaP
metabolites [155, 156]. After in vitro TCDD exposure
activation of the calcium/calmodulin signalling pathway
and an increase in intracellular calcium led to mitochon-
drial dysfunction associated with apoptosis in a human
lymphoblastic T-cell line model [157]. Depending on
the magnitude and duration of changes in Ca®" signal-
ling, various consequences are possible, such as suppres-
sion of humoral and cell-mediated immunity, apoptosis,
immune enhancement or proliferation.

Experimental studies on modulation of calcium signalling
by PFAS in immune cells A total of six relevant experi-
mental studies was identified, dealing with modulation of
calcium homeostasis in immune cells. Of these studies,
four originated from our literature research (see Meth-
ods) in addition to the discussion of two studies already
published before 2018. Mechanistic information on the
disruption of calcium signalling in immune cells by PFAS
is limited and mainly deal with innate immunity (see
Table 6 in Appendix). A large body of evidence for the
modulation of calcium homeostasis by PFAS in a vari-
ety of cell types (besides immune cells) and models exist
(data not shown).
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Table 6 in Appendix lists experimental studies showing
modulation of calcium homeostasis by PFAS in immune
relevant cells.

Wang and co-workers [158] demonstrated, that PFOS
increases cytosolic Ca®> ™~ in human and mouse mac-
rophages and activates the AIM2 (absent in melanoma
2) inflammasome in a process involving mitochon-
drial DNA release through the Ca®* dependent protein
kinase C (PKC)-NF-xB/ c-Jun N-terminal kinase (JNK)-
BAX/BAK axis. This process results in the production
of multiple proinflammatory cytokines, leading to endo-
plasmic reticulum (ER)-stress, cellular injury and tis-
sue inflammation. Four in vitro studies [111, 128, 159,
160] investigated mast cell-mediated allergic inflam-
mation as well as allergy/anaphylaxis-models and con-
cluded that the respective PFAS tested aggravated IgE-
dependent allergic symptoms. They all show an increase
in intracellular Ca*" levels in mast-like cells (mostly rat,
but also human cells) after treatment with PFOA [128,
159], PFOS [160], PFDA and PFUnDA, but not PFNA
and PFHpA [111]. The authors of the latter study there-
fore conclude that carbon chain length of PFAS may
serve as a factor in allergic inflammation. A key step for
mast cell activation is antigen-mediated cross-linking
of IgE via the high-affinity IgE receptor (FceRI) that can
trigger calcium mobilisation by two different modes:
store-operated Ca®* entry (SOCE) and non-SOCE (e.g.
L-type Ca®" channels) [161, 162]. In all four studies, as
a consequence of modulation in Ca*-levels, increased
levels of histamine, f3-hexosaminidase and augmented
mast cell degranulation were observed.

In human bone mesenchymal stem cells, genes related
to calcium signalling were upregulated for 6:2 chlorin-
ated polyfluorinated ether sulfonate (F-53B), PFOS,
PFHxS and PFOA. Subsequent calcium changes were
enhanced for F-53B with lower effective concentrations
and a more prolonged induction compared to PFOS and
PFHxS [163].

Ca’"-related mechanisms in other cell types An
increase in cytosolic Ca’>" seemed to be induced by PFAS
in most study models using different cell types. Ca’"
influx and efflux can occur across the plasma membrane
and within the cytosol across the ER, mitochondria or
lysosomes and is mediated by specific channels and
transporters that are part of complex signal transduction
cascades [149, 150].
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A body of experimental studies show possible Ca**
mediated mechanisms for (developmental) neurotoxicity
including interaction with different Ca®*-sensitive recep-
tors such as N-methyl-D-aspartate, L-type gated voltage
calcium channels [164—167], and it should be investi-
gated further if this could play a role in (developmental)
immunotoxicity.

We aimed to bridge mechanistic information observed
from other cell types to immune cells, in order to help elu-
cidate additional possible targets of PFAS and immune sys-
tem related consequences. Depletion of Ca®" stores in the
ER results in SOCE and subsequent activation of plasma
membrane calcium release-activated calcium channel
(CRAC). This mechanism is relevant for the activation of
immune cells such as T- and B- cells, NK cells and mast
cells [151] and thus important for immunity to infections
or antibody production [150, 152]. For example, in T-cells
activation of the T-cell receptor leads to Ca’" release
from the ER stores by inositol 1,4,5-trisphosphate recep-
tors (IP;R) channels and subsequent activation of the cal-
cineurin and the nuclear factor of activated T-cells (NFAT-)
pathway [149]. Mitochondria take up and extrude Ca*" for
proper T-cell responses after T cell receptor ligation [150].

L-type voltage-gated channels are also expressed in
T-cells and are required for fine-tuning of T-cell activa-
tion, cytokine production and Th2 function in asthma
[149, 152]. RyRs channels in the ER release Ca’" after
activation with disturbances leading to possible inhibi-
tion of the formation of the immune synapse in T cells
amongst others [149].

While several mechanisms observed with experimen-
tal (in vitro) models are thus likely relevant for immune
cells, experimental evidence on potential consequences
of increases in cytosolic Ca>" caused by PFAS exposure
includes: i) the activation of downstream kinases, such
as PKC, leading to the activation of NF-«B, JNK or p38-
MAPK signalling, ii) oxidative stress and generation
of ROS, iii) apoptosis, iv) induction of degranulation of
mast cells and v) reduced antibody production (T- and
B-cells). However, the mechanistic link between reduced
antibody production and altered calcium signalling is not
established yet.

In conclusion, PFAS show the ability to alter calcium
homeostasis in immune cells as evidenced by increases
in intracellular calcium concentrations in several in vitro
models.
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Additional investigations on other immune cell types
(e.g. T-cells and B-cells) and molecular targets includ-
ing Ca*"- channels and associated factors/proteins for
calcium signalling would be needed to gain insight into
the exact mode of action of the observed calcium imbal-
ance due to PFAS exposure. The complexity and network
of calcium signalling with vital cell processes including
immune function makes it challenging to assign adverse
outcomes to calcium signalling disruption.

Induction of oxidative stress and potential consequences
for immune health

PFAS have been shown to induce oxidative stress,
which occurs when the amount of oxidants such as
reactive oxygen species (ROS) in a cell exceeds its
antioxidant capacity. Ten relevant studies, describing
PFAS-induced oxidative stress, have been identified
from our literature research (see Methods). The for-
mation of ROS by PFAS has been reviewed in a recent
article by Gundacker and co-workers [168]. The most
common source of ROS formation intracellularly are
mitochondria, which are also an immediate target of
ROS. This may have pathological consequences, e.g.
oxidative damage of mitochondrial DNA may trigger
cell apoptosis by inducing mitochondrial stress and
downstream signalling [169]. Mitochondria play a key
role in the regulation of the immune system [169, 170].
For example, T cell activation is dependent on oxida-
tive phosphorylation and ROS production, while acti-
vated T cells can use either oxidative phosphorylation
or glycolysis for proliferation [169]. Mitochondria are
essential for the regulation of metabolism in different
types of immune cells through glucose oxidation as
well as the biosynthesis of fatty acids, amino acids and
hormones — this is critical for their survival, prolifera-
tion and activation [170]. Furthermore, mitochondria
are capable of activating innate immune responses,
such as the activation of NF-kB signalling pathways
and the inflammasome [169]. Mitochondrial ROS is
one of the mitochondrion-derived molecules that con-
tribute to activation of the NLRP3 inflammasome,
which has been shown to lead to secretion of proin-
flammatory cytokines [170, 171]. Overall, mitochon-
drial ROS is considered a regulator of the immune
system, as it provides signals that lead to cell state/fate
determination [170].

Members of the PFAS family have been shown to
induce ROS formation in human lymphocytes (PFOS)
[172], in murine astrocytes and mouse primary hepato-
cytes (PFOS and PFOA) [173, 174]. Furthermore, PFAS
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have been shown in vivo and in vitro to induce oxida-
tive stress by affecting Nrf2 and its target genes. Oral
PFOS exposure of male mice was shown to result in a
substantial suppression of hepatic protein levels of Nrf2,
which in turn led to the production of malondialdehyde
(MDA), suppressed the activity of superoxide dismutase
(SOD) and reduced glutathione (GSH) content in liver
homogenates [175]. Supplementing the PFOS treatment
with naringin, a naturally occurring flavonoid glycoside
with antioxidant properties, increased the Nrf2 expres-
sion and alleviated the oxidative stress response. Other
in vitro studies using various cell types have reported
declines in GSH content together with increases of
MDA content upon exposure to different PFAS, such
as PFOS, PFOA and PENA [172, 173, 176, 177]; study
details for references [172—177] are described in Table 7
in Appendix. Further support for the involvement of
Nrf2 was obtained from murine nrf2~/~ astrocytes,
which showed in response to PFOS or PFOA treatment
a significant decrease in GSH/GSSG ratio as compared
to their wildtype counterparts [173]. One study using
mouse primary hepatocytes reported the opposite
effect, i.e. an increase in GSH content upon exposure to
PFOS or PFOA, which the authors considered as adap-
tation to oxidative stress, leading to suppressed GSH
content and detoxification of oxidized GSSG to GSH
[174]. Additionally, the majority of these in vitro stud-
ies reported alterations of the major enzymatic antioxi-
dants SOD, catalase (CAT), and glutathione peroxidase
(GPx) [173, 174, 176, 177]. Adverse effects on mito-
chondria were observed through a decrease in mito-
chondrial membrane potential [172] and substantial
changes in morphology [173]. Given that these PFAS-
induced effects were observed in different cell types, it
is likely that similar effects may occur in cell types rel-
evant to the immune system.

Additionally, PFAS have been reported to alter cal-
cium signalling and calcium homeostasis (see Modula-
tion of key cell populations - animal studies section).
This also impacts mitochondria, which play a major
role in Ca”" signalling throughout the cell. For exam-
ple, they enhance bioenergetics necessary for T-cell
activation and proliferation via uptake of cytosolic
Ca®" [149]. By disturbing the Ca*" modulating func-
tion of mitochondria, PFAS may cause mitochondrial
Ca’" overload and increase mitochondrial ROS, which
further contributes to an affected immune response.
In conclusion, PFAS may affect the immune response
by inducing oxidative stress and mitochondrial
dysfunction.
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Modulation of NK cell activity

NK cells are innate lymphoid cells that play an impor-
tant role in antiviral responses and tumour defence. NK
cell activity is a measure of non-specific immunity and
a commonly used parameter in immunotoxicity studies
and a potential mediator of PFAS-associated suppres-
sion of disease resistance. Eleven experimental studies
are discussed in this section; of these nine have been
published before 2018 and two originate from our lit-
erature research (see Methods). NK cell counts, and
activity has been examined in several mouse studies,
mostly in response to PFOS exposure. Several of these
studies show a reduction in NK cell numbers and inhi-
bition of NK cell cytolytic activity in PFAS exposed
adult animals [64, 71, 72] and after prenatal exposure of
mice to PFOS (GD 1-17) or PFOA (GD 1-13) [74, 178].
However, in two mouse studies including low exposures
(from 0.166 pg PFOS/kg bw/day in a 28 day study and
from 8.33 ug/kg bw/day in a 60day study), an increase
in NK cells activity [70, 72] was reported in males at
concentrations up to 5mg/kg total administered dose
but not associated with reduced splenic and thymic cel-
lularity. For study designs of the following references:
[62, 68-70, 72], please see also Table 3 in Appendix;
study design of reference [176] is described in Table 7
in Appendix. In an in vitro study with 24 hour expo-
sure of PBMCs to either PFOS and PFOA [179], inhibi-
tion of NK cell activity by PFOS, but not of PFOA was
reported.

In addition to their cytolytic activity, NK cells secrete
several cytokines, that can modulate innate and adap-
tive immune responses [180], however possible effects
of PFAS on such properties are not known. The NTP
concluded in 2016 that the evidence on NK cell modu-
lations by PFOA was weak due to limited studies, but
there was moderate confidence that exposure to PFOS
is associated with changes in NK cell activity in animals
[8]. Few new data on PFAS-associated changes in NK
cell number and activity were found in our literature
review. However, a recent study with gestational expo-
sure (GD 1-13) to PFOA, by Jiang and co-workers [178],
showed a reduced number of uterine NK cells at the
maternal-foetal interface; for study details see Table 7
in Appendix. In conclusion, available data indicate that
PFOS and likely also PFOA cause a decrease in NK
cell activity and number. Based on the study by Dong
and co-workers [72], one could speculate, that a non-
monotonic dose response is possible. However, further
characterisation of the NK cell changes in response to
human-relevant PFAS exposure levels and its potential
contribution to changes in infectious disease risk are
needed.
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Immunoenhancement

Immunoenhancement (immuno-stimulation) can broadly
be defined as inappropriate activation of the immune sys-
tem and may result in hypersensitivity responses such as
allergy or asthma or as autoimmune reactions where the
immune system responds to self-antigens [14, 181].

Hypersensitivity

As detailed above in section, “Knowledge on immu-
nomodulatory effects of PFAS from epidemiological
studies’, data from prospective studies appear inconclu-
sive concerning an association between PFAS exposures
and asthma. However, several cross-sectional studies
report increased risk of asthma, and it is hypothesised
that PFAS may exacerbate existing asthma, but have a
minor role in disease development. No conclusion could
be drawn regarding potential effects of PFAS exposures
on lung function or other hypersensitivity-related health
outcomes.

The NTP concluded in 2016 [8], that there is mod-
erate confidence that exposure to PFOA is associated
with increased hypersensitivity responses based on
the available animal studies [128, 182, 183]; see NTP
review [8] for discussion of study details. Mechanistic
data for PFOA-associated hypersensitivity suggested
the response is IgE-mediated and may involve stimu-
lation of mast cells, but a clear pattern of effects on
inflammatory cytokines or the role of NF-kB at rel-
evant PFOA concentrations had not been established.
For PFOS, there were few experimental studies avail-
able [73, 182] and due to inconsistent results from
animal and human studies, the evidence for an associ-
ation with hypersensitivity reactions with PFOS expo-
sure was ranked as low at that time [8]. In addition to
the evidence reviewed by the NTP [8], our literature
review (see Methods) identified five more recent (2018
and newer) studies. Several in vivo studies address
the possible effects of PFAS on hypersensitivity reac-
tions [111, 160, 184—187]. For study designs, please see
Table 6 in Appendix [111, 160] and Table 7 in Appen-
dix [184-187]. These studies provide additional sup-
port that high to moderate exposures to PFOA and
PFOS may aggravate allergic lung responses in ovalbu-
min (OVA) sensitised mice [111, 160, 184, 185]. These
studies further suggest that PFAS may increase serum
IgE and OVA-specific IgE, and change cytokine pro-
duction towards a Th2-dominated response in mice
[160, 184, 185].

In the study by Wang et al. [187], pre-treatment of
mice with intranasal administered PFOS was shown to
reduce early life allergic asthma responses to house dust
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mites in a mouse model of allergic asthma and dampen
the Th2 response. The authors report that PFOS bind to
and inactivate Der pl, the major immuno-active com-
ponent of the house dust mite as well as to lipopolysac-
charides (LPS) and thus alters the in vivo responses to
these molecules. In this study, PFOS also inhibited the
response to Pseudomonas aeruginosa infection. The
study underlines that several modes of action may con-
tribute to how PFAS may modulate early life antigen
responses.

Several in vitro experiments have measured the
release of hypersensitivity mediators, like histamine and
B-hexosaminidase, and cytokines in cultured cells after
PFOA and PFOS exposure [111, 160, 186] and in sen-
sitised mast cells [111, 160] exposed to PFOS and long-
chained PFCAs. These studies support that, at least at
higher concentrations, PFAS may exacerbate airway
hypersensitivity reactions. These studies are further
detailed above in section “Modulation of calcium signal-
ling” and in Tables 6 and 7 in Appendix.

Autoimmune diseases

Autoimmune disease and related effects are the result of
immune responses against self-molecules [14]. The NTP
concluded that the evidence from both human and ani-
mal studies translate into inadequate level of evidence
for an association with PFOS exposure. There was weak
evidence from human studies, that PFOA exposure was
linked to ulcerative colitis [188, 189], and inconsist-
ent findings for rheumatoid arthritis [8]. Our literature
review (see Methods) identified three more recent (2018
and newer) relevant studies. In a recent update from
former C8 Science Panel members and collaborators, it
was concluded that there is evidence for an association
between PFOA exposure and ulcerative colitis (UC), but
not for other auto-immune diseases [190]. This was also
the conclusion of the ATSDR report [9]. Since UC is
only restricted to the colon/rectum (and no association
with Crohn’s disease was observed), it was discussed
this may involve effects of PFOA on bacterial exposure
unique to the lower GI tract as well as inflammation-
mediated mechanisms. However, no positive associa-
tion between PFAS and UC was observed in the most
recent study [191].

Experimental animal data for autoimmunity are
scarce. Using an experimental mouse model of auto-
immune diabetes, Bodin and co-workers showed that
PFUnDA exposure of female mice from conception
and up to 30 weeks of age exacerbated pancreatic insu-
litis development, a potential early marker for type 1
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diabetes (T1D), but did not accelerate diabetes develop-
ment [192]. A recent scoping review included three epi-
demiological studies examining associations between
different PFAS and T1D, but no clear trends could be
identified [193].

In conclusion, the evidence that PFAS contribute to
risk of autoimmune diseases is currently weak.

Discussion

This review aimed to collect available information and
describe hallmarks of the molecular mechanisms leading
to PFAS-induced immunotoxicity. Figure 2 provides an
overview of the mechanisms discussed within this article.
A full understanding of the mechanisms has not yet been
achieved for various reasons, including the use of differ-
ent methods and models to investigate different types
of immune responses for single members of the PFAS
group.

In addition to their unique chemical and physical prop-
erties, PFAS exert different as well as partly overlapping
types of immunotoxicity, and amongst other factors,
crosstalk of (nuclear) receptors and variation in down-
stream signalling add to the complexity.

The immunotoxicity of PFAS have been in focus
recently and several reviews have been published [11,
20, 39, 194]. While Antoniou and co-workers conclude
that more evidence would be needed to select immu-
nomodulation as a critical endpoint for human PFAS
risk assessment [194], other reviews postulate strong
evidence for PFAS exposure on diminished childhood
antibody vaccination response [11, 39]. The data pre-
sented in this review strengthens the evidence that
PFAS indeed do show immunomodulatory activities
in vitro, in animals and in humans. The associations
between PFAS and reduced vaccination specific anti-
body responses in children is strong and the evidence
is strengthened also with regard to an increased risk of
common infectious disease.

Data gaps and recommendations

Mechanism of action of immunotoxicity of PFAS

Even though a large body of data on some PFAS exists,
further research to address data gaps is needed. As Fragki
and co-workers [109] point out, human-relevant test
systems would be ideal to obtain more insight into the
mechanistic pathways for immunotoxicity pertinent to
humans. These studies should be designed with a care-
ful consideration of appropriate dosing and toxicokinet-
ics, so as to enable biologically plausible quantitative
extrapolations.
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Fig. 2 Mechanistic considerations of modulation of (developmental) immune functions by PFAS. Figure Legend: Relevant mechanisms that may
underlie the observed effects on the (developmental) immune system are: i) modulation of cell signalling and nuclear receptors, such as NF-kB,
PPARs and others; downstream signalling might vary due to receptor crosstalk; ii) alteration of calcium signalling and calcium homoeostasis in
immune cells (having an impact on oxidative stress, inflammasome activation, nuclear receptors such as NF-kB, cytokine levels and degranulation
of mast cells); iii) modulation of key cell populations necessary for an antibody response; iv) modulation of NK cells; v) modulation of mast cells and
IgE influencing hypersensitivity; vi) oxidative stress and vii) impact on fatty acid metabolism and secondary effects on the immune system. Green
arrows indicate induction, red arrows inhibition, grey arrows modulation in either direction and dashed lines potential modulation (with a higher

degree of uncertainty)

Emphasis should be placed on describing AOPs
(Adverse Outcome Pathways) involved in PFAS-induced
immunotoxicity, given the (very) limited number avail-
able in the AOP Wiki (aopwiki.org) and the scientific
literature. This would greatly facilitate the identification
of appropriate new approach methodologies (NAMs)
to generate relevant mechanistic information for sub-
stances without the need to perform additional animal
experiments, and to facilitate read-across to chemicals
with more data-rich (in vivo) toxicity databases. PFOS
and PFOA are the most studiedPFAS, but their mode

of action has not been fully identified, and available
mechanistic information on other PFAS is limited. To
this respect, the recent efforts under the OECD Work-
ing Party of the National Coordinators of the Test
Guidelines Programme (WNT) [195], where an Ad
hoc expert group was established to develop a detailed
review paper on the application and interpretation of
in vitro immunotoxicity assays and definition of a tiered
approach to testing and assessment, is a promising step
in this direction.


http://aopwiki.org
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Similar to the AOP framework, key characteristics
(KCs), that describe properties of agents or exposures
that confer toxicological hazards, can be used as an
organising principle for research supporting the evalu-
ation of compounds of concern. Very recently, during
the submission phase of this paper, a committee of 18
experts with diverse areas of expertise published 10
key characteristics (KCs) of immunotoxic agents: 1)
covalent binding to proteins to form novel antigens, 2)
affecting antigen processing and presentation, 3) altera-
tion of immune cell signalling, 4) alteration of immune
cell proliferation, 5) modification of cellular differentia-
tion, 6) alteration of immune cell-cell communication,
7) alteration of effector function of specific cell types,
8) alteration of immune cell trafficking, 9) alteration of
cell death processes, and 10) breaking down immune
tolerance [196]. Various PFAS, not only PFOA and
PFOS, affect multiple aspects of the immune system
and therefore very likely show several of these 10 KCs
of immunotoxic agents: e.g., KC no. 2) ‘affecting anti-
gen processing and presentation’ could be indicated by
the findings with TDAR assays with PFOA and PFOS
(see Repeated dose toxicity and immunotoxicity stud-
ies in animals section); KC no 3) ‘alteration of immune
cell signalling’ via the modulation of nuclear receptors
(such as NF-kB and PPARs; see Modulation of NF-kB
regulated gene transactivation and Involvement of
PPARs sections) or Modulation of calcium signalling);
Section 4.3; KC no. 9) ‘alteration of cell death processes’
via induction of oxidative stress, to name a few. Further
investigation of the KCs of immunotoxicity of PFAS is
highly recommended.

This could be a topic of priority for the recently
launched Horizon Europe Partnership for the Assess-
ment of Risks from Chemicals (PARC; https://www.
anses.fr/en/content/european-partnership-assessment-
risks-chemicals-parc), which will likely make a signifi-
cant contribution to this area. Inmunotoxicity has been
designated as one of the toxicological effects for which
(networks of) AOPs and IATAs (Integrated Approaches
to Testing and Assessment) will be generated and PFAS
have been chosen as a priority substance group.

Additional investigations on other immune cell types
(e.g., T-cells and B-cells) and molecular targets includ-
ing Ca*"- channels and associated factors/proteins for
calcium signalling would be needed to gain better insight
into the exact mode of action of the observed calcium
imbalance due to PFAS exposure.

Given the complexity and uncertainty regarding the
mechanisms underlying immunotoxicity in the case
of PFAS, NAMs must be carefully applied. Promising
examples are the use of mechanistic computational
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platforms, such as the Universal Immune System Sim-
ulator, UISS-TOX as described by Pappalardo and co-
workers and in vitro high throughput platforms (as
described by Naidenko et al. [197]. Assumptions for
the immunotoxicity mode of action of PFAS had to be
taken by Pappalardo and co-workers for the UISS-TOX
platform [198] that might not be fully supported by
currently available data. Furthermore, PFAS show the
limitations of the currently available high-throughput
assays for immunotoxicity screening in the U.S. EPA
ToxCast Program, as Naidenko and co-workers point
out. The authors state that the existing assays likely do
not capture the full extent of the possible mechanisms
of immunotoxicity, especially in different immune cell
subpopulations [197].

On the other hand, in terms of risk assessment and
management, the research already available on legacy
PFAS may be useful to elucidate the susceptibilities of the
immune system and its critical windows during develop-
ment that may also relate to similar toxicity from other
environmental chemicals.

Current guidelines and gaps in immunotoxicity testing

and regulatory risk assessment

For PFAS, as for many other agents, the developing
immune system may be more sensitive than the adult
immune system. Identification of the critical windows of
exposure related to adverse effects to the immune system
is essential.

A comprehensive risk assessment requires that all
types of immunotoxicity be addressed, as clearly indi-
cated in the guidance for immunotoxicity risk assess-
ment for chemicals [14]. The goal is to detect chemically
induced immune dysfunction with an impact on health
risk, which is best achieved by testing host-resistance to
a foreign challenge in functional assays. However, the
current data requirements requested as part of chemical
legislative frameworks such as the REACH Regulation
do not align with the demands for assessing all aspects
of the (developing) immune system. For instance, the
TDAR assay is only requested optionally under REACH
as part of the extended-one generation repeated-dose
toxicity (EOGRT) study (OECD TG 443), based on
positive immune- or endocrine-related findings that
are (amongst others) observed in repeated-dose tox-
icity studies. Thus, it cannot be excluded that many of
the substances that will cause (developmental) immune
effects other than skin sensitisation will currently remain
unnoticed. Hence, efforts are urgently needed to lower
the threshold of immunotoxicity testing in standard reg-
ulatory evaluations of e.g., industrial chemicals, biocides
or pesticides.


https://www.anses.fr/en/content/european-partnership-assessment-risks-chemicals-parc
https://www.anses.fr/en/content/european-partnership-assessment-risks-chemicals-parc
https://www.anses.fr/en/content/european-partnership-assessment-risks-chemicals-parc
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Additional data gaps

Human studies may have underestimated exposure dur-
ing early development of the immune system and efforts
should be undertaken to better assess early life expo-
sures. Due to the sensitivity of the developing immune
system, importance should be given to the measurement
of PFAS serum levels during pregnancy and in umbilical
cord blood.

An important question also might be how PFAS expo-
sure might affect potential susceptibility and severity
of viral illness, including but not limited to COVID-19.
Studies providing evidence that PFAS may alter COVID-
19 risk via epigenetically-regulated immune pathways
have been summarised by Bulka and co-workers [199].
Epigenetic immune modifications (such as changes in
DNA methylation) may provide mechanistic insights into
the decreased antibody response observed after vaccina-
tion and further research is necessary to investigate this
relationship.

According to the recommendations by EFSA [10],
more longitudinal epidemiological studies are needed
on human endpoints, in particular prospective vac-
cination studies covering other types of vaccines, dif-
ferent populations, as well as more studies on other
immune outcomes in humans, including the risk of
infections.

Due to their high contribution to the PFAS levels
observed in human serum, EFSA points out the need
for more experimental studies with PENA and PFHxS
on the immune system. This scope might be widened
to frequently found PFAS-replacement products, as
detected in bodily fluids of the general population in
the U.S. [200], and China [201], such as 9-chlorohex-
adecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS
also known as 6:2 CI-PFESA, trade name “F-35B”), per-
fluoro-3,5,7,9-tetraoxadecanoic acid (PFO4DA) or per-
fluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoA),
amongst others.

PFAS grouping according to their toxicological pro-
file and the development of relative potency would
greatly assist risk assessment approaches for the evalu-
ation of PFAS mixtures and risk management. In an
attempt to shed more light on the differences in the
immunotoxic potential and potency between PFAS,
animal experiments were evaluated in an upcoming
publication by Bil and co-workers, with the purpose of
deriving so-called Relative Potency Factors (RPFs) for
immune effects [202]. The RPF methodology allows
performing risk assessments for combined expo-
sures to multiple compounds, which is of relevance to
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assessing the risk of PFAS mixtures [203]. The authors
successfully derived internal RPFs for decreased thy-
mus weight, spleen weight, and globulin in rodents,
but the available dose-response information for blood
cell counts was insufficient for the derivation of RPFs.
The results from the studies using internal RPFs indi-
cate that internal RPFs based on liver weight increase
as well as the newly derived RPFs based on decreased
weight of lymphoid organs are similar [202]. Studying
of relative potencies of PFAS using NAMs and accom-
panying quantitative in vitro-in vivo extrapolation
(QIVIVE) methods may support these findings (EFSA
tender: [204]).

Conclusions

Taken together, there is ample evidence illustrating
PFAS affect multiple aspects of the immune system,
which supports the overall conclusion that not only
PFOA and PFOS, but also other members of the PFAS
family alter immune functions in humans. The most
reported immunotoxic effect in humans is immunosup-
pression, reflected by reduced vaccine antibody levels
and increased risk of common infectious diseases. At
present, a clear picture of effects on immune cell phe-
notypes could not be derived from epidemiological
studies.

Mechanistic in vitro studies provide further evidence
for PFAS-induced immunotoxicity, demonstrated by
modulation of nuclear receptors (e.g., NF-kB, PPARs),
Ca*-signalling, as well as modulation of oxidative stress
and cytokine levels. In in vivo studies, a robust pattern
of PFOA- and PFOS- associated immunosuppression
has been observed with the TDAR assay, with less data
available for other PFAS members. Experimental ani-
mal studies underline the resting immune system as a
relevant target for PFAS-induced toxicity. Animal stud-
ies show further, that some PFAS, including PFOS and
PFOA, can reduce splenic and thymic cellularity and lev-
els of circulating WBC.

Timing of exposure is critical, because the develop-
ing immune system is especially vulnerable to toxic
insults, resulting in a higher risk of immune effects in
infants and children. However, the current data require-
ments requested as part of chemical legislative frame-
works such as REACH do not sufficiently align with the
demands for assessing all aspects of the (developing)
immune system.

Appendix
Tables 1,2, 3,4,5,6 and 7
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Table 2 Literature search criteria for epidemiological studies: performed in August 2021 to cover papers published on PFAS not
included in the EFSA opinions (2018, 2020), as well as papers published after July 2019 for the 27 PFASs included in the EFSA 2020
Opinion [10]. The original search included studies with several health outcomes. Thus, for the present review, immunotoxicological
outcomes were used as inclusion criteria in the initial manual screening process. The literature search for the immune outcomes in
humans was extended to cover the period from August 2021 to January 2022

Search No. Keywords and combination of search strings

1

(((perfluoroalkyl carboxylic or perfluorobutanoic or perfluoropentanoic or perfluorohexanoic or perfluoroheptanoic or
perfluorooctanoic or perfluorononanoic or perfluorodecanoic or perfluoroundecanoic or perfluorododecanoic or perfluoro-
tridecanoic or perfluorotetradecanoic or perfluoropentadecanoic or perfluorohexadecanoic or perfluorooctadecanoic) adj
acid?) or PFCAs or PFBA or PFPeA or PFHxXA or PFHpA or PFOA or PENAor PFDA or PFUNDA or PFDoDA or PFTrDAor PFTeDA
or PFPeDA or PFHxDA or PFODA or ((perfluoroalkane or perfluorobutane or perfluorohexane or perfluorooctane or per-
fluorodecane or perfluoroalkane) adj sulfonic acid?) or PFSAs or PFBS or PFHXxS or PFOS or PFDS or PFSIAs or PFOSI or FASAs
or FOSA or EtFASAs or EtFOSA or EtFASEs or EtFOSE or FC-807 or (n:2 adj (“fluorotelomer alcohol?” or FTOHs or “polyfluoroalkyl
phosphoric acid ester?”)) or (8:2 adj (FTOH or “fluorotelomer alcohol” or monoPAP or “fluorotelomer phosphate monoester”
or diPAP or “fluorotelomer phosphate diester”)) or ((perfluoroalkane or perfluorooctane) adj sulfonamide?) or (N-ethyl

adj (perfluoroalkane or perfluorooctane) adj sulfonamidoethanol?) or “perfluoroalkyl phosphate” or “ammonium bis[2-[N-
ethyl(heptadecafluorooctane)sulphonylaminolethyllphosphate”).tw,kf.

limit 1 to yr="2018 -Current”
(TFMS or ((triflurooacetic or Trifluoromethanesulfonic) adj acid?)).tw,kf.

(PFCAs or PFBA or PFPeA or PFHXA or PFHpA or PFOA or APFO or PFNA or PFDA or PFUNDA or PFDoDA or PFTrDA or PFTeDA
or PFPeDA or PFHxDA or PFHpDA or PFODA or perfluoroalkyl carboxylate? or ((“perfluoroalkyl carboxylic” or perfluorobutanoic
or perfluorobutyric or perfluoropentanoic or perfluorohexanoic or perfluoroheptanoic or perfluorooctanoic or perfluoronona-
noic or perfluorodecanoic or perfluoroundecanoic or perfluorododecanoic or perfluorotridecanoic or perfluorotetradecanoic
or perfluoropentadecanoic or perfluorohexadecanoic or perfluroheptadecanoic or perfluorooctadecanoic) adj acid?)).tw,kf.

(PFSAs or PFBS or PFPeS or PFHXS or PFHpS or PFOS or PENS or PFDS or perfluoroalkane sulfonate? or ((perfluoroalkane or
perfluorobutane or perfluoropentane or perfluorohexane or perfluoroheptane or perfluoroheptane or perfluorooctane or
perfluorononane or perfluorodecane) adj“sulfonic acid?”)).tw,kf.

(PFSIAs or PFOSI or ((perfluoroalkane or perfluorooctane) adj “sulfinic acid?”)).tw,kf.

(PFECAs or HFPO-DA or GenX or DONA or ADONA or HFPO dimer acid fluoride or HFPO-TA or PFO4DA or PFO5DoDA or EEA-
NH4 or mv31 K+ or F-DIOX or ((“perfluoroalkyl ether carboxylic” or “hexafluoropropylene oxide dimer” or “dodecafluoro-3H-4,8-
dioxanonanoic” or “perfluoro-3,5,7,9-butaoxadecanoic” or “perfluoro-3,5,7,9,11-pentaoxadodecanoic”) adj acid?) or "Hydro-Eve”
or“ammonium difluoro[1,1,2,2-tetrafluoro-2-(pentafluoroethoxy)ethoxylacetate” or “potassium 2-(3-trifluoromethoxy-
1,1,2,2,3,3-hexafluoropropoxy)-2,3,3,3-tetrafluoropropionate” or ‘ammonium difluorof[2,2,4,5-tetrafluoro-5-(trifluoromethoxy)-
1,3-dioxolan-4-ylJoxy}acetate”).tw,kf.

(PFESAs or "6:2 CI-PFESA; F-53B" or “8:2 CI-PFESA; PFESA-BP2, Nafion Byproduct 2" or ((Perfluoroalkyl or “6:2 chlorinated poly-
fluorinated” or “8:2 chlorinated polyfluorinated”) adj “ether sulfonic acid?”)).tw,kf.

(PASFs or POSF or (8:2 adj (FTOH or FTSA or monoPAP or diPAP)) or “6:2 FTSA”" or PFOSA or FOSA or EtFOSA or FC-807 or (n:2

adj (FTOHs or FTSAS)) or FASAs or MeFASAs or EtFASAs or ((“perfluoroalkane sulfonyl” or perfluorooctanesulfonyl) adj fluoride?)
or ((n:2 or 82 or 6:2) adj fluorotelomer adj (alcohol? or sulfonic acid? or phosphate monoester? or phosphate diester?)) or n:2
Polyfluoroalkyl phosphoric acid esters”or (((perfluoroalkane or perfluorooctane) adj (sulfonamide? or sulfonamidoacetic acid?))
or perfluoroalkyl phosphate or Ammonium bis[2-[N-ethyl (heptadecafluorooctane)” or “sulfonylaminolethyl]phosphate”)).tw,kf.

(PASFs or POSF or (8:2 adj (FTOH or FTSA or monoPAP or diPAP)) or “6:2 FTSA" or PFOSA or FOSA or EtFOSA or FC-807 or (n:2 adj
(FTOHs or FTSAS)) or PAPs or FASAs or MeFASAs or EtFASAs or ((“perfluoroalkane sulfonyl”or perfluorooctanesulfonyl) adj fluo-
ride?) or ((n:2 or 8:2 or 6:2) adj fluorotelomer adj (alcohol? or sulfonic acid? or phosphate monoester? or phosphate diester?))
or“n:2 Polyfluoroalkyl phosphoric acid esters” or (((perfluoroalkane or perfluorooctane) adj (sulfonamide? or sulfonamidoacetic
acid?)) or perfluoroalkyl phosphate or “Ammonium bis[2-[N-ethyl (heptadecafluorooctane)” or “sulfonylaminolethyllphos-
phate”)).tw,kf.

((PFE adj (akane? or alkene?)) or Hostinert 216 or PMVE or PPVE or PEVE or Mv31 or Move3 or FC-3284 or PF-310 or Tetra-
conazole or Noviflumuron or Novec 7700 or (perfluoroether adj (alkane? or alkene?)) or “perfluoro(5,8,9,12-tetramethyl-
4,7,10,13-tetraoxahexadecane)” or “perfluoro(5,6,9,12-tetramethyl-4,7,10,13-tetraoxahexadecane)” or “1,1,2-Trifluoro-
2-(trifluoromethoxy)ethene”or “1,1,1,2,2,3,3-heptafluoro-3-[(trifluorovinyl)oxylpropane perfluoropropylvinylether” or
“1,1,2-Trifluoro-2-(pentafluoroethoxy)ethene” or “1,1,2,2,3,3-hexafluoro-1-trifluoromethoxy-3-trifluorovinyloxypropane” or
“1-[difluoro(trifluoromethoxy)methoxyl-1,2,2-trifluoroethylene”or “2,2,3,3,5,5,6,6-octafluoro-4-(trifluoromethyl)morpholine” or
“1-[3-[4-((heptadecafluorononyl)oxy)-benzamido]propyll-N,N,N-trimethylammonium iodide” or “1-[2-(2,4-Dichlorophenyl)-
3-(1,1,2,2-tetrafluoroethoxy)propyl]-1H-1,2,4-triazole” or “2-(trifluoromethoxy)-benzenesulphonamide” or
"2,2,3,3,5,5,6,6-octafluoro-4-(1,1,1,2,3,3,3-heptafluoropropan-2-yl)morpholine”or“2,2,3,3,5,5,6,6-octafluoro-4-(heptafluoropropyl)
morpholine” or “(1 s,4r)-4-Propyl-4’-[4-(trifluoromethoxy)phenyl]l-1,1’-bi(cyclohexyl)” or “2/,3,5-Trifluoro-4"-(trans-
4-propylcyclohexyl)-4-trifluoromethoxy-[1,1/;4,1"lterphenyl” or 2,3,3,4,4-pentafluoro-2,5-bis(1,1,1,2,3,3,3-heptafluoropropan-
2-yl)-5-methoxytetrahydrofuran”).tw,kf.

6557

2578
447
5029

4366

306

47

852

2751

170
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Table 2 (continued)

Search No. Keywords and combination of search strings N

12

13
14
15
16
17

18

19
20
21
22
23
24
25
26

(perfluorocarbon? or “F-gas*" or HFC-23 or HFC-125 or HFC-134a or Norflurane or HFC-143a or HFC-227ea or HFC-236fa or 4504
HFC-236ea or HFC-245fa or HFC-365mfc or HFC-4310mee or Vertrel XF or HFC-5213 or HFC-7613 or C6-ethane or HFCPA or
ZEORORA or HFE-7100 or HFE-7200 or HFE-7300 or HFE-7500 or HFE-365pcf3 or HFO-1234yf or HFO-1243zf or "HFO-1234ze(E)"
or "HFO-1336mzz(2)" or "HFO-1336mzz(E)" or HFO-1114 or HFO-1216 or HFO-1132a or Vinylidenfluoride or hydrofluoro-
carbon? or “fluoroform, trifluoromethane” or pentafluoroethane or“1,1,1,2-Tetrafluoroethane” or “1,1,1-trifluoroethane” or
“1,1,1,2,3,3,3-heptafluoropropane” or “1,1,1,3,3,3-hexafluoropropane” or “1,1,1,2,3,3-hexafluoropropane”or “1,1,1,3,3-pentafluoro-
propane”or“1,1,1,3,3-pentafluorobutane”or“1,1,1,2,2,3,3,4,4,5,5,6 6-tridecafluorohexane” or “1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluo-
rooctane”or"1,1,2,2,3,3,4-heptafluorocyclopentane” or hydrofluoroether? or“1,1,1,2,2,3,3,4,4-Nonafluoro-4-methoxybutane

- 2-[difluoro(methoxy)methyl]-1,1,1,2,3,3,3-heptafluoropropane (1:1)" or“1,1,1,2,2,3,4,5,5,5-Decafluoro-3-methoxy-4-
(trifluoromethyl)pentane” or “3-Ethoxyperfluoro(2-methylhexane)” or “3-(Difluoromethoxy)-1,1,2,2-tetrafluoropropanec” or
“hydrofluoroolefin?”or“2,3,3,3-Tetrafluoro-1-propene” or “3,3,3-trifluoropropene” or “(1E)-1,3,3,3-Tetrafluoro- 1-propene” or
“(22)-1,1,1,4,4,4-Hexafluoro-2-butene” or “(2E)-1,1,1,4,4,4-Hexafluoro-2-butene” or tetrafluoroethylene or hexafluoropropylene or
“1-1-difluoroethene”).tw,kf.

“2,2,2-Trifluoroethanol”tw,kf. 676
(HFO or HFE or PFE or PAPs or TFE og HFC).tw kf. 7299
or/3-14 20,190
20r15 20,191
epidemiologic studies/ or exp. case-control studies/ or exp. cohort studies/ or controlled before-after studies/ or cross-sec- 2,739,581
tional studies/ or Controlled Before-After Studies/

(“non randomi*” or nonrandomi* or “case control” or casecontrol or Longitudinal or Retrospective or “panel study” or “panel 1,899,515
studies” or crosssectional or crossectional or “cross sectional”or cohort analy* or “control group”or “case stud*”).tw,kf.

((cohort or controlled or comparative clinical) adj (study or studies or trial?)).tw,kf. 570,599
((observational or Follow up or epidemiologic$ or prospective) adj3 (study or studies or trial?)).tw,kf. 718,496
(("controlled before”ad;j2 after) or pretest or posttest or pre test or post test).tw,kf. 33,168
or/17-21 4,153,271
16 and 22 2976
(fluor* or perfluor* or polyfluor®).tw,kf. 818,697
23 and 24 1228

23 not 25 1748

Please see also List of Abbreviations, for description of Table see Methods section
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Table 5 Experimental binding/agonistic effects of PFAS to PPARy, PPARB/S and PPARa (see also Involvement of PPARSs section, Results)

Compound and activity Test system (organism) Reference
PPARy
PFBS exposure — causes elevated expression of PPARy (b) In vitro (HepG2) [224]
PFOA — can activate PPARy (e) In vivo (mussel) [225]
PFOA - agonistic activity towards PPARYy (f) In vitro (HEK 293) [226]
PFCAs — C8 to C14 showed an agonistic activity towards PPARY, in HPA cells the activity In vitro (HPA-s; HEK 293; 3T3-L1) (1471

increased from C8 to C11 and then fluctuated, in 3T3-L1 the activity increased from C8 to C13
and then slightly fluctuated (g)

PFCAs - bind to PPARYy, binding affinity increased from C4 to C11 and then decreased slightly  In vitro (HepG2) [148]
from C12to C18 (c)
PFSAs — binding to PPARy, binding affinity is stronger compared to PFCAs with the same In vitro (HepG2) [148]
carbon chain-length (c)
PFOA and PFOS - bind to PPARy, PFOA shows a higher binding affinity compared to PFOS (d)  In vitro (buffer solution) [227]
PFOS binds to PPARy — agonistic activity (a) In vitro (3T3-L1; HEK 293) [122]
6:2 CI-PFAES binds to PPARy - agonistic activity (a) In vitro (3T3-L1; HEK 293) [122]
8:2 CI-PFAES binds to PPARy - agonistic activity (a) In vitro (3T3-L1; HEK 293) [122]
HFPO-TA and HFPO-DA - agonistic activity towards PPARy (f) In vitro (HEK 293) [226]
PFAAs - containing carbon chain-length from C6 to C12 may alter the PPARy activity; sulfonic  In silico (Molecular dynamic calculations) [228]
acid groups showed a higher affinity to bind to PPARy compared to carboxylic acids with the
same carbon chain length (h)
DONA - shows the ability to activate PPARy (h) In silico (Molecular dynamic calculations) [228]
PPARB/6
PFBA, PFHXS and PFOS - binds to PPARR/S (d) In vitro (buffer solution) [227]
PFOS binds to PPARB/S — agonistic activity (a) In vitro (3T3-L1; HEK 293) [122]
6:2 and 8:2 CI-PFAES bind to PPARB/S - agonistic activity (a) In vitro (3T3-L1; HEK 293) [122]
PPARa
HFPO-DA — PPARa (i) activation Maternal and foetal liver tissue (rat) [229]
PFBS - PPARa (b) activation In vitro (HepG2) [224]
HFPO-DA - PPARa (j) activation New-born pup liver tissue (rat) (21
PFHxA and PFNA - strong binding to PPARa (d) In vitro (buffer solution) [227]
PFOS - agonistic activity towards PPARa (a) In vitro (3T3-L1 cells) [122],
6:2 CI-PFESA - strong binding to PPARa (k) In vitro (3T3-L1 cells) [230]
PFBA, PFHxA, PFOA, PFHxS and PFOS - PPARa (I) activation In vitro (HepG2) [231]
PFOA — PPARa (m) activation In vitro (MCF-10A) [232]

Abbreviations: 3T3-L1 Mouse preadipocyte cells, C/-PFAES Chlorinated polyfluorinated ether sulfonates, DONA 4,8-dioxa-3H-perfluorononanoic acid, HEK 293 Human
embryonal kidney cells, HepG2 Human hepatoma cell line, HFPO-DA Hexafluoropropylene oxide-dimer acid, HFPO-TA Hexafluoropropylene oxide trimer acid, HPA-s
Human preadipocytes-subcutaneous, MCF-10A Human mammary epithelial cells, PPAR Peroxisome proliferator-activated receptor, PFAA Perfluoroalkyl acids, PFBA
Perfluorobutanoic acid, PFBS Perfluorobutane sulfonate, PFCA Perfluorocarboxylic acid, PFHxA Perfluorohexanoic acid, PFHxS Perfluorohexane sulfonate, PFNA
Perfluorononanoic acid, PFOA Perfluorooctanoic acid, PFOS Perfluorooctane sulfonate, PFSAs Perfluorosulfonic acids
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Abbreviations

AlM2
AOP
ATSDR
BaP

BPA
Catt
CAR
CAT
CI-PFAES
CI-PFOS
COVID-19
COX-2
CRAC

EC
ECHA
EFSA
EOGRTS
ER

F-53B

FA

GenX chemicals

GSH
GPx
HBM4EU

HFPO
HFPO-DA
KCs
IFNy
IATA

g

IL

IpsR
LDL
LRTI
MDA
N
NAMs
NFAT
NF-kB
NK
NLRP3

Nrf2
NTP
OECD
OVA
PAHs
PFAS
PFBS
PFCAs
PFDA
PFDoDA
PFHxA
PFHXS
PFMOAA
PFMOBA
PFMOPrA
PFOA
PFOS
PFPA
PFSAs
PFUNDA
PKC
POPs
PPARs
RCT

ROS
RPFs
RXR

Absent in Melanoma 2 (inflammasome)

Adverse Outcome Pathway

U.S. Agency for Toxic Substances and Disease Registry
Benzo[alpyrene

Bisphenol A

Calcium ion

Constitutive Activated Receptor

Catalase

Chlorinated polyfluorinated ether sulfonates
Chlorinated polyfluorooctane sulfonate
Coronavirus Disease caused by the SARS-CoV-2 virus
Cyclooxygenase-2

Calcium Release-Activated Calcium Channel
European Commission

European Chemicals Agency

European Food Safety Authority

Extended-One Generational Reprotoxicity Toxicity Study
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