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Abstract: Prenatal organophosphorus pesticides (OPs) are ubiquitous and have been linked to adverse
neurodevelopmental outcomes. However, few studies have examined prenatal OPs in relation to
diagnosed attention-deficit/hyperactivity disorder (ADHD), with only two studies exploring this
relationship in a population primarily exposed through diet. In this study, we used a nested case-control
study to evaluate prenatal OP exposure and ADHD diagnosis in the Norwegian Mother, Father, and
Child Cohort Study (MoBa). For births that occurred between 2003 and 2008, ADHD diagnoses were
obtained from linkage of MoBa participants with the Norwegian Patient Registry (N = 297), and a
reference population was randomly selected from the eligible population (N = 552). Maternal urine
samples were collected at 17 weeks’ gestation and molar sums of diethyl phosphates (ΣDEP) and
dimethyl phosphates metabolites (ΣDMP) were calculated. Multivariable adjusted logistic regression
models were used to estimate the association between prenatal OP metabolite exposure and child ADHD
diagnosis. Additionally, multiplicative effect measure modification (EMM) by child sex was assessed. In
most cases, mothers in the second and third tertiles of ΣDMP and ΣDEP exposure had slightly lower
odds of having a child with ADHD, although confidence intervals were wide and included the null.
EMM by child sex was not observed for either ΣDMP or ΣDEP. In summary, we did not find evidence
that OPs at 17 weeks’ gestation increased the odds of ADHD in this nested case-control study of ADHD
in MoBa, a population primarily experiencing dietary exposure.

Keywords: ADHD; hyperkinetic disorder; organophosphorus pesticide; prenatal exposure; MBRN;
MoBa; diethylphosphate; dimethylphosphate; dietary exposure

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) affects 3 to 6% of children world-
wide [1,2] and is diagnosed more frequently in boys compared to girls [3]. Individuals
with ADHD have been shown to have lower academic [4,5] and work performance [6],
less work stability [6], more difficulty with professional [6] and personal [7] relationships;
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and lower overall quality of life [8,9]. Heritable factors are estimated to account for 70 to
80% of ADHD cases [10]. However, there is a substantial need for identifying modifiable
environmental risk factors that may be amenable to intervention. Prenatal environmental
exposures are of particular interest as the prenatal period is a vulnerable time due to rapid
brain growth and development [11–13].

One group of potential environmental risk factors for ADHD are organophosphorus
pesticides (OPs). OPs are insecticides that were originally used as nerve agents during
conflicts in the 1930s and 1940s, with some later used in lower doses as insecticides [14,15].
At high doses, OPs inhibit carboxyl ester hydrolases, mainly acetylcholinesterase (AChE),
which results in overstimulation of nicotinic and muscarinic receptors [14]. Adverse effects
of chronic low-dose OP exposure (i.e., exposure below the level expected to result in
appreciable AChE inhibition) have been observed, although the mechanism of action is
less established [14]. Regardless, various mechanisms have been proposed to explain low-
dose effects, including changes to the methylation of DNA [16], neuroinflammation [17],
interference with neural cell differentiation through signaling cascades [18], inhibition of
DNA synthesis [18,19], and effects on insulin resistance [20].

Epidemiological studies have observed associations between prenatal OP exposure
and adverse neurodevelopmental and behavioral outcomes in children including increased
risk for autism [21,22], decreased motor function [23–25], increased executive dysfunc-
tion [26,27], and decreased IQ [28–30] in addition to several other neurodevelopmental
endpoints [31,32]. To date, eight studies have examined the relationship between prenatal
OP exposure and ADHD or ADHD-like symptoms, with mixed results [33–40]. In addition,
two recent studies investigating impacts on offspring executive function, which are often
impaired among children with ADHD, found that higher prenatal OP exposure was associ-
ated with decrements in offspring executive function across parent- and teacher-ratings as
well as performance-based measures [39,41].

The bulk of the neurodevelopmental literature includes studies conducted in agri-
cultural settings proximate to agricultural OP applications or in urban populations that
were enrolled during a period where residential applications of OPs were allowed [31,32].
However, dietary exposure to OPs is likely the most common route of exposure in the
general population [42], especially in countries such as Norway where the pest population
is lower compared to more southern latitudes [43]. In these environments, imported food
may be an important route of exposure to consider as pesticides are routinely applied to
fruit and vegetable crops to prevent loss through insects [43–46].

In this study, we sought to investigate the association of prenatal OP exposure with
clinical ADHD diagnosis, while accounting for the potential beneficial role of a diet rich in
fruit and vegetables. We additionally explored the role of child sex as a potential modifier of
this relationship, given the pronounced sex disparity in ADHD diagnosis. We hypothesized
that higher OP exposure would be associated with greater odds of an offspring ADHD
diagnosis, with stronger associations among boys compared to girls.

2. Materials & Methods
2.1. Study Population

We utilized a sub-study of the Norwegian Mother, Father, and Child Cohort Study
(MoBa). MoBa is a prospective population-based cohort that enrolled participants between
1999 and 2008 [47]. All Norwegian speaking pregnant people were considered eligible [47].
Individuals were recruited at their first ultrasound appointment (~17 weeks’ gestation)
at which time a spot urine sample was collected [47]. Over the course of MoBa, 41% of
the invited 227,702 pregnancies enrolled (N = 112,908) [47]. MoBa was approved by the
Regional Committee for Medical Research and the Norwegian Data Inspectorate, and
written informed consent was obtained from study participants. Mothers completed
questionnaires at 17-, 22-, and 30- weeks’ gestation as well as longitudinally after birth [47].
Data on pregnancy health, delivery procedures and pregnancy outcomes were obtained
through linkage with the Medical Birth Registry of Norway (MBRN) [47].
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Children were eligible for the present study if they were born after 2002 (N = 60,835),
had completed a 36-month postnatal questionnaire (N = 34,190 remaining), did not have
Down’s syndrome or cerebral palsy (N = 34,099 remaining), had available maternal biospec-
imens (N = 28,097 remaining), were the result of a singleton pregnancy (N = 27,347 re-
maining), and resided within close proximity of Oslo (the location of the clinic assessment;
N = 24,035 remaining) [48]. From this final eligible population, we linked with the Norwe-
gian Patient Registry (NPR) to identify diagnosed cases of ADHD.

2.2. Selection of ADHD Cases

ADHD diagnoses were obtained from linkage of study participants with NPR, as
previously described by Engel (2018) et al. [48]. NPR is a medical record database from
government funded facilities linked to the government reimbursement system. Reporting
is mandatory and captures an estimated 90% to 95% of ADHD cases in Norway [49].
ADHD cases were coded using ICD-10 classification (ICD-10 codes: F90, F90.0, F90.1, F90.8,
F90.9) [50] and 2 registrations were required to exclude false diagnoses and coding errors.
A total of 298 ADHD cases met the inclusion criteria.

2.3. Selection of the MoBa Reference Population

We randomly selected 554 mother-child pairs from the final MoBa eligible population
to represent the exposure distribution in the population of pregnancies that gave rise to
the cases; we refer to these mother-child pairs as the MoBa reference population. As only
two individuals that were identified as diagnosed ADHD cases via the NPR were also
randomly sampled into our MoBa reference population, we decided to analyze this study
as a nested case-control study. As such, these 2 overlapping individuals were treated as
cases, decreasing the number of mother-child pairs in the MoBa reference population from
554 to 552.

2.4. Measurement of OP Metabolites

Maternal spot urine samples were collected at the mother’s first ultrasound appoint-
ment (~17 weeks’ gestation). Details regarding shipment, storage, and quality assurance
and control procedures for MoBa urine samples have been detailed previously [51,52].
Briefly, urine samples were shipped unrefrigerated to a central ISO-certified lab in Oslo
(Biobank) in commercially-available urine transport tubes with a preservative (chlorhexi-
dine plus ethyl paraben and sodium propionate) to prevent bacterial growth [53]. Most
samples were received within one (66%) or two (10%) days of collection [51]. Upon receipt,
urine samples were processed and stored at −80 degrees C [53].

Measurement of dialkylphosphate (DAP) metabolites was conducted at the Norwegian
Institute of Public Health using a ultra-performance liquid chromatography-time-of-flight
system [54]. The six DAPs measured include three dimethyl phosphates [dimethyl phos-
phate (DMP), dimethyl thiophosphate (DMTP), and dimethyl dithiophosphate (DMDTP)]
and three diethyl phosphates [diethyl phosphate (DEP), diethyl thiophosphate (DETP),
and diethyl dithiophosphate (DEDTP)]. These metabolites represent a large portion of OPs,
where two or more metabolites may correspond to the same parent compound [55,56].

To assess assay performance, procedural blank samples and two in-house control
samples were included per analytic batch as well as 4–6 laboratory-blinded quality control
(QC) pooled urine samples. Samples were randomized to analytic batch and technicians
were blinded to outcome status. Specific gravity was measured using a pocket refractometer
(PAL-10S) from Atago. One urine sample was excluded as an OP metabolite measurement
could not be obtained; this decreased the number of ADHD cases from 298 to 297.

The percent above limit of detection (LOD) for DMP, DMTP, DMDTP, DEP, and DETP
were 66.1%, 99.9%, 28.9%, 98.7%, and 66.8% respectively; values of these metabolites below
the LOD were imputed from a log-normal distribution truncated at the LOD [57]. DEDTP
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was excluded as only 2.4% of DEDTP values were above the LOD [57]. Metabolites were
then specific gravity corrected to account for urine dilution using Equation (1):

P∗
ij = Pij ×

c − 1
SGj − 1

(1)

where, P*ij is the specific gravity corrected value of Pij, Pij is the measured or imputed value
of the OP i for participant j, SGj is the specific-gravity for participant j, and c the geometric
mean of specific-gravity across all participants for the OP i.

Next, metabolites were converted from ng/mL to nmol/L by dividing each metabolite
by its respective molecular mass. OP metabolites were next grouped by molecular weight,
thus ΣDMP was the sum of DMP, DMTP, and DMDTP and ΣDEP was the sum of DEP
and DETP [58]. Calculation of ΣDMP and ΣDEP can be seen in Equations (2) and (3)
respectively:

ΣDMPj =
DMPj

126, 048
+

DMTPj

141, 101
+

DMDTPj

158, 170
(2)

where, ΣDMPj is molar sum of DMP, DMTP, and DMDTP for a participant, j. DMPj is
the DMP measured or imputed value for participant j. DMTPj is the DMTP measured or
imputed value for participant j. DMDTPj is the DMDTP measured or imputed value for
participant j. All values are in in nanomole/liter.

ΣDEPj =
DEPj

153, 094
+

DETPj

169, 155
(3)

where, ΣDEPj is molar sum of DEP and DETP for a participant j. DEPj is the DEP measured
or imputed value for participant j. DETPj is the DETP measured or imputed value for
participant j. All values are in in nanomole/liter.

Evaluation of DAPs as molar sums within their respective subgroups (ΣDMP and
ΣDEP) rather than evaluating the six DAPs individually follows usual practice as multiple
DAPs can result from metabolism of the same parent compound [55,56].

2.5. Potential Confounders

Maternal age at delivery (years), child sex at birth (male, female), and birth year
(2003–2004, 2005, 2006, 2007–2008) were obtained from the MBRN. Maternal education (less
than a 4-year college degree, a 4-year college degree, more than a 4-year college degree),
financial difficulty experienced in the past 12 months (yes, no), marital status (single, co-
inhabiting, married), parity (nulliparous, parous), maternal smoking during pregnancy
(yes, no), maternal drinking during pregnancy (yes, no), maternal exposure to pesticides
in the past 6 months (yes, no), paternal exposure to pesticides in the past 6 months (yes,
no), residing on a farm or detached home (home not attached to another home such as in
an apartment complex or condominium) during pregnancy (yes, no), and season of urine
collection (fall, winter, spring, summer) were obtained from the maternal questionnaire
administered at 17 weeks’ gestation. Maternal history of depression (yes/no) was also
collected from this questionnaire using a dichotomized version of the lifetime history (LTH)
of major depression (MD) assessment [59]. Raw fruit and vegetable consumption, frequency
of organic fruit and vegetable consumption (yes/no), and total fish consumption were
derived from a semiquantitative food frequency questionnaire administered at 22 weeks’
gestation. From this questionnaire, raw fruit consumption, raw vegetable consumption,
and total fish consumption were estimated by converting daily, weekly, and monthly
intake to servings per day for fruit and vegetable intake and grams per day for total fish
intake. Maternal ADHD symptoms (yes, no) were determined using the Adult ADHD Self-
Report Scales (ASRS) screener which was completed as part of the 36 months postpartum
questionnaire [60].
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2.6. Statistical Analysis

Descriptive statistics were generated for all variables. Spearman correlations between
ΣDMP and ΣDEP were calculated. Missing covariate data can be found in Table 1 and was
imputed using a multivariable imputation by chained equations (MICE) approach (m = 20).
MICE is sometimes referred to as fully conditional specification, where missing values are
imputed from conditional models. To apply this approach, a random value was selected
from an appropriate distribution (representative of the data), conditional on the outcome,
exposure, and other covariates. Summary estimates from the combined generated datasets
were derived using Rubin’s rules for imputation [57,61–63].

Table 1. Characteristics of a nested case-control study of attention-deficit/hyperactivity disorder
(ADHD) in the Norwegian Mother, Father, and Child Cohort Study, birth years 2003–2008.

Characteristic
ADHD Cases Representative Controls

Mean (SD) or N (%) Mean (SD) or N (%)

Total N 297 552
Maternal age at delivery (years) 29.2 (5.1) 30.9 (4.2)

Missing (N) 2 2
Child sex at birth

Male 214 (72.3) 274 (49.6)
Female 82 (27.7) 278 (50.4)
Missing (N) 1 0

Maternal education
Less than a 4-year college degree 160 (61.8) 123 (23.3)
4-year college degree 74 (28.6) 238 (45.0)
More than a 4-year college degree 25 (9.7) 168 (31.8)
Missing (N) 38 23

Experienced financial difficulty in the
past 12 months

Yes 102 (38.1) 73 (13.3)
No 166 (61.9) 477 (86.7)
Missing (N) 29 2

Marital status
Single 18 (6.7) 14 (2.6)
Co-inhabiting 144 (53.5) 245 (44.8)
Married 107 (39.8) 288 (52.7)
Missing (N) 28 5

Parity
Nulliparous 154 (52.2) 281 (51.1)
Parous 141 (47.8) 269 (48.9)
Missing (N) 2 2

Maternal ADHD symptoms *
Yes 11 (8.0) 21 (3.9)
No 126 (92.0) 520 (96.1)
Missing (N) 160 11

Reported lifetime history of depression
Yes 96 (36.5) 115 (21.1)
No 167 (63.5) 429 (78.9)
Missing (N) 34 8

Any smoking during pregnancy
Yes 94 (34.8) 77 (14.1)
No 176 (65.2) 469 (85.9)
Missing (N) 27 6

Any alcohol use during pregnancy
Yes 26 (10.8) 66 (13.0)
No 214 (89.2) 442 (87.0)
Missing (N) 57 44
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Table 1. Cont.

Characteristic
ADHD Cases Representative Controls

Mean (SD) or N (%) Mean (SD) or N (%)

Raw-vegetable consumption
(servings/day) 0.47 (0.39) 0.60 (0.48)

Missing (N) 48 12
Raw fruit consumption (servings/day) 1.90 (1.45) 2.13 (1.26)

Missing (N) 44 13
Organic vegetable consumption

Seldom/Never 167 (66.5) 328 (61.2)
Sometimes/Often/Usually 84 (33.5) 208 (38.8)
Missing (N) 46 16

Organic fruit consumption
Seldom/Never 182 (72.2) 361 (67.5)
Sometimes/Often/Usually 70 (27.8) 174 (32.5)
Missing (N) 45 17

Total fish consumption (grams/day) 26.9 (20.4) 27.5 (19.0)
Missing (N) 41 7

Maternal exposure to pesticides during
the past 6 months †

Yes 8 (3.2) 25 (4.9)
No 241 (96.8) 483 (95.1)
Missing (N) 48 44

Paternal exposure to pesticides during
the past 6 months †

Yes 26 (12.3) 56 (11.9)
No 185 (87.7) 414 (88.1)
Missing (N) 86 82

Resided on a farm or detached home
during pregnancy

Yes 119 (45.8) 220 (41.7)
No 141 (54.2) 308 (58.3)
Missing (N) 37 24

Year of birth
2003–2004 131 (44.1) 55 (10.0)
2005 87 (29.3) 130 (23.6)
2006 44 (14.8) 194 (35.1)
2007–2008 35 (11.8) 173 (31.3)
Missing (N) 0 0

Season of urine collection
Fall 56 (18.9) 121 (21.9)
Winter 67 (22.6) 155 (28.1)
Spring 81 (27.3) 140 (25.4)
Summer 93 (31.3) 136 (24.6)
Missing (N) 0 0

Note: SD, standard deviation; N, frequency. Note: Percentages may not add to 100% due to rounding. * Based
on the Adult ADHD Self-Report Scale (SRS). † Refers to any exposure (yes/no) to weed killers, insecticides, and
fungicides during the six months prior to the questionnaire distributed at 17 weeks’ gestation.

We used adjusted logistic regression models to estimate associations between prenatal
ΣDEP and ΣDMP exposure and offspring ADHD. Functional form assessment of ΣDMP
and ΣDEP using Akaike Information Criterion identified OP tertiles as the most appropriate
descriptor of OP exposure.

Potential confounders were identified from the literature and their relationships were
examined using a direct acyclic graph (DAG) [64]. The minimally sufficient adjustment set
based on the DAG included birth year, fish consumption, season of urine collection, family
income, fruit and vegetable intake, organic food consumption, maternal age at delivery,
and maternal education. Starting with this adjustment set, we eliminated covariates that
had a minimal impact on estimated associations for parsimony. Final models included
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season, birth year, maternal education, fruit and vegetable intake, family income, maternal
ADHD and child sex. Maternal ADHD was included because ADHD has substantial
heritability [65–68], and maternal ADHD symptoms and may affect the potential for OP
exposure through other pathways (e.g., diet). In addition, our final models simultane-
ously estimated associations for ΣDEP and ΣDMP in order to address the potential for
confounding by pesticide exposures in the alternate class (DMP or DEP respectively).We
examined multiplicative effect measure modification (EMM) of OP-ADHD associations by
child sex using an augmented product term approach [69]. All analyses were conducted
using version 9 of the quality-assured MoBa data files in SAS 9.4 (Cary, NC, USA).

2.7. Sensitivity Analysis

Two sensitivity analyses were performed. To determine the impact of imputation,
primary models were rerun without imputing data (i.e., a complete case analysis). To
evaluate the impact of adjusting for the other OP molar sum, models were rerun without
mutually adjusting for the other metabolite class.

3. Results

Characteristics of the study population can be seen in Table 1. The average maternal
age at delivery was around 30 years old. When compared to the MoBa reference popu-
lation, children with ADHD were more likely to be male (72.3% vs. 49.6%) and to have
mothers with less educational attainment (61.8% vs. 23.3% not completing a 4-year college
degree), more financial difficulty (38.1% vs. 13.3%), and that reported having maternal
ADHD symptoms themselves (8.0% vs. 3.0%). Each covariate had less than 10% of values
missing, except paternal exposure to pesticides in the prior 6 months (19.9% missing), and
maternal self-reported ADHD symptoms (20.1% missing). Missing covariate data were
more extensive among children with ADHD compared to the MoBa reference population.

Specific-gravity and non-specific-gravity adjusted OP metabolite distributions are in
Table 2 and Table S1, respectively. For all OP metabolites, geometric means were higher
in the MoBa reference population compared to the ADHD case group. Additionally,
ΣDMP and ΣDEP appeared to be moderately correlated, with Spearman correlations of
0.489 among ADHD cases and 0.524 in the MoBa reference population (Table S2).

We observed no association between ΣDMP or ΣDEP and offspring ADHD, either
overall or within sex-specific strata (Table 3). Although point estimates were generally
below the null, confidence intervals were wide (particularly among girls after stratification
by sex). Imputation of missing data did not materially impact estimates apart from slightly
improving precision (Table S3). Estimates from models without co-adjustment for the other
OP metabolite sum were similar to the mutually adjusted estimates (Table S4).

Table 2. Specific-gravity-corrected organophosphorus metabolite distribution at 17 weeks’ gestation
in a nested case-control study of attention-deficit/hyperactivity (ADHD) in the Norwegian Mother,
Father, and Child Cohort Study (MoBa), birth years 2003–2008 (N = 849).

Exposure Geometric Mean (SD) * Min 25% 50% 75% Max

DMP (nmol/L)
ADHD cases (N = 297) 23.0 (3.86) 1.01 6.54 27.1 66.8 617
Representative MoBa controls (N = 552) 31.3 (3.73) 0.03 10.7 36.3 80.0 1057

DMTP (nmol/L)
ADHD cases (N = 297) 16.0 (4.44) 0.20 5.87 14.0 40.9 1015
Representative MoBa controls (N = 552) 26.2 (3.89) 0.01 10.3 22.7 59.4 1291

DMDTP (nmol/L)
ADHD cases (N = 297) 2.58 (3.15) 0.24 1.34 2.07 4.13 180
Representative MoBa controls (N = 552) 3.32 (3.62) 0.01 1.43 2.76 5.90 356

ΣDMP (nmol/L)
ADHD cases (N = 297) 49.4 (3.41) 5.88 17.9 45.6 117 1412
Representative MoBa controls (N = 552) 71.2 (3.29) 0.05 30.9 64.6 155 1979
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Table 2. Cont.

Exposure Geometric Mean (SD) * Min 25% 50% 75% Max

DEP (nmol/L)
ADHD cases (N = 297) 11.7 (2.31) 0.46 6.59 11.3 20.8 162
Representative MoBa controls (N = 552) 14.5 (2.39) 0.01 8.54 14.2 24.6 124

DETP (nmol/L)
ADHD cases (N = 297) 2.55 (3.95) 0.09 0.88 2.25 6.10 206
Representative MoBa controls (N = 552) 4.32 (4.15) 0.01 1.62 4.16 10.5 541

ΣDEP (nmol/L)
ADHD cases (N = 297) 15.8 (2.42) 0.76 8.39 13.9 30.6 229
Representative MoBa controls (N = 552) 21.0 (2.58) 0.02 11.5 19.7 37.1 581

Note: Concentrations were expressed to three significant digits, except for the maximum (max) value. Representative
MoBa controls were randomly selected from the eligible population to represent the exposure distribution in the
study base. * SD refers to the geometric standard deviation. Min, minimum; max, maximum; nmol/L, nanomole per
liter; DMP, dimethyl phosphate; DMTP, dimethyl thiophosphate; DMDTP, dimethyl dithiophosphate; ΣDMP, the
molar sum of the dimethyl phosphates; DEP, diethyl phosphate; DETP, diethyl thiophosphate; ΣDEP, the molar sum
of the diethyl phosphates. Values below the limit of detection were imputed from a log-normal distribution truncated
at the limit of detection. All values were standardized to the geometric mean of specific gravity.

Table 3. Estimated overall and sex-specific odds of having a child with attention-deficit/hyperactivity
disorder (ADHD) per tertile of organophosphorus pesticide metabolite concentration at 17 weeks’
gestation, adjusted for covariates, in a nested case-control study of ADHD in Norwegian Mother,
Father, and Child Cohort Study, birth years 2003–2008.

Exposure Combined Boys * Girls *

Cases/Controls OR (95% CI) Cases/Controls OR (95% CI) Cases/Controls OR (95% CI)

∑DMP
Tertile 1 (<34.5 nmol/L) 126/157 ref 88/70 ref 37/87 ref

Tertile 2 (34.6 to 102.6 nmol/L) 87/196 0.77 (0.49, 1.21) 67/103 0.70 (0.40, 1.23) 20/93 0.70 (0.30, 1.61)
Tertile 3 (>102.6 nmol/L) 84/199 0.63 (0.38, 1.04) 59/101 0.55 (0.29, 1.04) 25/98 0.65 (0.27, 1.59)

∑DEP
Tertile 1 (<12.4 nmol/L) 129/154 ref 94/70 ref 34/84 ref

Tertile 2 (12.5 to 26.3 nmol/L) 88/195 0.86 (0.54, 1.36) 62/100 0.72 (0.41, 1.29) 26/95 1.41 (0.61, 3.28)
Tertile 3 (>26.3 nmol/L) 80/203 0.83 (0.50, 1.39) 58/104 0.80 (0.43, 1.52) 22/99 0.86 (0.34, 2.15)

Note: OR, odds ratio; CI, confidence interval; ref, reference; ΣDMP is the molar sum of the dimethyl phosphates;
ΣDEP is the molar sum of the diethyl phosphates; nmol/L, nanomole per liter. Models are adjusted for season,
birth year, maternal education, vegetable intake, fruit intake, maternal self-reported ADHD, financial status, other
OP molar sum, and sex. Stratum-specific estimates are derived from models that additionally include interaction
terms for each included variable using an augmented product term approach to assess effect measure modification
(EMM) by sex on the multiplicative scale. * p-values for EMM were all ≥0.20.

4. Discussion

In this nested case-control study of prenatal ΣDMP and ΣDEP exposure at 17 weeks’
gestation and offspring ADHD, we observed no evidence of increased odds of ADHD in
relation to increased exposure either overall or within strata of child sex. Despite adjusting
for prenatal consumption of raw fruit and vegetables, higher exposure to ΣDMP and ΣDEP
metabolites tended to be associated with slightly reduced odds of ADHD, however the
confidence intervals were wide and included the null.

Although the bulk of the literature on prenatal OP exposure and offspring ADHD is
mixed, the results from our study are consistent with five previous studies that did not
observe associations with ADHD or ADHD-like behaviors [34,36,37,40,70]. Similar to our
findings, a study of the Generation R cohort by van den Dries (2019) et al., found that higher
prenatal ΣDEP concentrations were linked with fewer ADHD traits at 3, 6, and 10 years, as
measured by the Child Behavior Checklist [37]. Although both we and van den Dries et al.
attempted to account for the potential beneficial role of a healthy diet in statistical models,
it is likely that both of our studies were impacted by residual negative confounding by a
healthy diet, as diets high in fruits and vegetables are associated with numerous health
benefits [71]. Dalsager (2019) et al. also found no association of the chlorpyrifos-specific
biomarker 3,5,6-trichloro-2-pyridinol with ADHD symptoms in the preschool period [36].
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Conversely, other studies have found associations of prenatal OP exposure with
offspring ADHD symptoms and executive dysfunction [33,35,39,41]. In particular, we
draw attention to our recent investigation of prenatal OP exposure on preschool executive
functions in which we found consistent negative impacts on both parent- and teacher-
rated executive functions across a range of domains in the MoBa cohort [41]. However,
it is important to note that in exploratory analyses of this population, adverse impacts
on executive functions were much stronger among children without preschool ADHD,
suggesting that other pathways, including potentially heritable pathways, may be more
important in the development of ADHD [10].

Although interactions with child sex have been reported for prenatal OP exposure and
ADHD in some studies, we did not observe evidence of multiplicative EMM in our study.
This finding is consistent with four other studies on prenatal OP exposure and ADHD or
ADHD-like symptoms that explored EMM by child sex [36–40]. However, findings in our
study are contrary to a study by Marks (2010) et al. that found significant associations
between prenatal DAPs and most measures of ADHD and ADHD-like symptoms among
boys only on both the additive and multiplicative scales [33]. Additionally, Fortenberry
(2014) et al. also observed EMM, finding a significant association between prenatal chlor-
pyrifos exposure and ADHD-related outcomes among girls only, when assessing EMM on
the additive scale (multiplicative EMM was not assessed) [34]. Although our study found
no evidence of EMM, our study’s reliance on a clinical diagnosis of ADHD may undermine
power to assess EMM as girls were less-often diagnosed (only 28% of the cases) [72].

A reason for discrepancies in the literature may be the challenges inherent in mea-
surement of ADHD or ADHD-like symptoms, which may be magnified in the earliest
age groups. The majority of prenatal OP-ADHD studies focused on symptoms in the
preschool period [33,35–38,40], with only 3 other studies evaluating ADHD symptoms after
the age of 5 years [34,37,39]. ADHD symptoms in the preschool period are particularly
difficult to appropriately capture, because many symptoms of ADHD, like hyperactivity,
are considered normative for this age group [73]. Our study is intended to be representative
of ADHD cases in Norway, therefore, it is likely that few ADHD cases in this study received
an ADHD diagnosis before the age of 6 [49]. Additionally, while our study is benefited by
having a clinical diagnosis, clinical diagnosis of ADHD is challenging because diagnostic
criteria are based on observation of external behaviors, and thus clinical variability and
experience play a role in diagnosis at the provider level [74].

The OP-ADHD literature is also challenged by numerous study-specific differences
regarding the nature of exposure to OP parent compounds in the individual populations,
which are difficult to differentiate based on non-specific dialkylphosphate biomarkers. Half
of the studies on prenatal OP exposure and ADHD were conducted in the US and more
than a quarter of agricultural pesticides used in the US are currently banned in the EU,
including many OPs [15,43,75]. Because the most common biomarkers of OPs used are
non-specific DAPs, distinguishing between specific OPs with varying levels of toxicity
is impossible. As such, differences in associations across studies may be in part due to
a different compilation of parent compound exposures in the underlying communities.
In addition, a number of studies have been conducted in higher-dose communities with
substantial direct exposure to parent compounds through either agricultural or indoor
pest applications [44,76–78]. Ye et al. (2009) directly compared DAP concentrations in
MoBa, the Generation R Study, and NHANES, finding that MoBa concentrations were
considerably lower than Generation R, but somewhat higher than NHANES, which the
authors attributed to differences in dietary exposure across these regions [44]. However,
dietary exposure to OPs as measured by urinary DAPs is susceptible to misclassification, as
it is impossible to distinguish between exposure to the potentially toxic parent compound
and the non-toxic metabolites themselves [79]. OPs on fruits and vegetables are known to
biodegrade quickly [80] and the majority of food in Norway is imported [43–46]. Therefore,
the DAP concentrations seen in our study may be reflective of a larger proportion of
non-toxic OP metabolites rather than direct OP exposure.
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Our study has many strengths. This was an efficient nested case-control study within
a large and representative population-based cohort that contained an extensive amount of
questionnaire data covering important covariates, such as maternal ADHD symptoms and
prenatal dietary intake of fruits and vegetables. As a result, we were able to account for im-
portant confounding pathways that have been rarely addressed in prior studies. Maternal
ADHD has the potential to confound the association between prenatal OP exposure and
offspring ADHD through socioeconomic and behavioral pathways [65–68,81–83]. Fruit
and vegetable consumption may be an important source of negative confounding due to
the beneficial health impacts of a diet rich in fruit and vegetables [71]. Our study is the first
studies to utilize clinically diagnosed ADHD. Most previous studies on prenatal OP expo-
sure and offspring ADHD have relied on maternally reported symptoms of ADHD-like
behaviors, which may be variably accurate. Diagnosed cases are more likely to select for
clinically significant and impairing symptoms of ADHD, and are more likely to employ
diagnostic standards, improving the accuracy of ADHD classification.

Although there are many strengths of our study, there are also some limitations.
Because MoBa only collected one urine sample during pregnancy, we can only assess
exposure at ~17 weeks’ gestation. OPs are quickly metabolized with estimated half-lives
between a few hours to several days [56] and have been found to have low reliability
among pregnant individuals [84]. Therefore, results may not be generalizable to other
periods in pregnancy or post-natal exposure. Furthermore, although the second trimester
is thought to be a particularly susceptible window of exposure for neurodevelopment
because of rapid brain growth and development, the null results observed in this study
could be due to OPs having a different window of susceptibility such as the first or
third trimester of pregnancy or during the postnatal period [12,13]. However, van den
Dries et al. reported similar results having three urine specimens over the course of
pregnancy [37]. Additionally, while utilizing a clinical diagnosis of ADHD substantially
improves accuracy over parentally reported symptoms, a recent study investigating the
clinical basis of ADHD NPR registrations reported that only 50% of the sample examined
had adequately documented the clinical evaluation supporting the diagnosis [85]. While
these insufficiently documented cases may yet be true ADHD cases, the lack of appropriate
documentation suggests the possibility of misclassification, even in a clinically assessed
sample. Also, linkage with the NPR was conducted at a single point in time, which results
in earlier birth years having more opportunity for diagnosis. To address this, we adjusted
for birth year in our final model to account for any temporal factors that may be related to
outcome ascertainment or exposure. Apart from clinical accuracy, other population-level
selection factors may impact clinical ascertainment. For example, girls represent a minority
of the NPR ADHD cases identified in this study (28%), which may in part be due to lower
clinical referrals for ADHD evaluation in girls as a result of their lower prevalence of
externalizing symptoms [72]. While under-identification of ADHD cases would not bias
our primary results, it would reduce our power to identify EMM by sex [86]. Therefore,
null results regarding sex-specific effects may be indicative of lack of power rather than
lack of an association. Furthermore, this study used an ICD-10 classification of ADHD
which differs from DSM diagnostic criteria as it does not recognize inattentive-only ADHD
cases [50,87]. As such, care should be made in cross-study comparisons using different
diagnostic criteria. Similarly, ADHD is a heterogenous disorder that can be classified
into different subtypes such as hyperactive-only ADHD or hyperactive and inattentive
ADHD. This study was unable to differentiate between ADHD subtypes; however, future
studies may want to consider potential modification by ADHD subtype as the underlying
biological mechanisms between OPs and ADHD could be subtype specific.

5. Conclusions

In summary, despite a robust body of evidence linking prenatal OP exposure with ad-
verse neurodevelopmental impacts [31,32] including deficits in executive function [26,27],
we did not observe an association between prenatal ΣDEP or ΣDMP exposure at 17 weeks’
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gestation and increased odds of clinically diagnosed ADHD in offspring, even after
accounting for fruit and vegetable intake and maternal ADHD symptoms. Although
confidence intervals were wide (particularly among girls) and included the null, our re-
sults are in accordance with other recent studies that similarly found no association with
ADHD [34,36,37,40,70]. OPs have short half-lives, and DAPs as biomarkers of exposure
suffer from limitations which have been previously described [56,84]. In addition, ADHD
is a complex disorder with strong heritability and there are few modifiable risk factors that
have been strongly linked with its occurrence, however more research is urgently needed
in this area in order to reduce the prevalence of this debilitating disorder.
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