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Abstract

Background: Pre-eclampsia is a leading cause of maternal and perinatal mortality and morbidity. Early identification of
women at risk during pregnancy is required to plan management. Although there are many published prediction
models for pre-eclampsia, few have been validated in external data. Our objective was to externally validate published
prediction models for pre-eclampsia using individual participant data (IPD) from UK studies, to evaluate whether any of
the models can accurately predict the condition when used within the UK healthcare setting.

Methods: IPD from 11 UK cohort studies (217,415 pregnant women) within the International Prediction of Pregnancy
Complications (IPPIC) pre-eclampsia network contributed to external validation of published prediction models,
identified by systematic review. Cohorts that measured all predictor variables in at least one of the identified models
and reported pre-eclampsia as an outcome were included for validation. We reported the model predictive
performance as discrimination (C-statistic), calibration (calibration plots, calibration slope, calibration-in-the-large), and
net benefit. Performance measures were estimated separately in each available study and then, where possible,
combined across studies in a random-effects meta-analysis.
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Results: Of 131 published models, 67 provided the full model equation and 24 could be validated in 11 UK cohorts.
Most of the models showed modest discrimination with summary C-statistics between 0.6 and 0.7. The calibration of
the predicted compared to observed risk was generally poor for most models with observed calibration slopes less
than 1, indicating that predictions were generally too extreme, although confidence intervals were wide. There was
large between-study heterogeneity in each model’s calibration-in-the-large, suggesting poor calibration of the
predicted overall risk across populations. In a subset of models, the net benefit of using the models to inform clinical
decisions appeared small and limited to probability thresholds between 5 and 7%.

Conclusions: The evaluated models had modest predictive performance, with key limitations such as poor calibration
(likely due to overfitting in the original development datasets), substantial heterogeneity, and small net benefit across
settings. The evidence to support the use of these prediction models for pre-eclampsia in clinical decision-making is
limited. Any models that we could not validate should be examined in terms of their predictive performance, net
benefit, and heterogeneity across multiple UK settings before consideration for use in practice.

Trial registration: PROSPERO ID: CRD42015029349.

Keywords: Pre-eclampsia, External validation, Prediction model, Individual participant data

Background
Pre-eclampsia, a pregnancy-specific condition with
hypertension and multi-organ dysfunction, is a leading
contributor to maternal and offspring mortality and
morbidity. Early identification of women at risk of
pre-eclampsia is key to planning effective antenatal
care, including closer monitoring or commencement
of prophylactic aspirin in early pregnancy to reduce
the risk of developing pre-eclampsia and associated
adverse outcomes. Accurate prediction of pre-
eclampsia continues to be a clinical and research pri-
ority [1, 2]. To-date, over 120 systematic reviews have
been published on the accuracy of various tests to
predict pre-eclampsia; more than 100 prediction
models have been developed using various combina-
tions of clinical, biochemical, and ultrasound predic-
tors [3–6]. However, no single prediction model is
recommended by guidelines to predict pre-eclampsia.
Risk stratification continues to be based on the pres-
ence or absence of individual clinical markers, and
not by multivariable risk prediction models.
Any recommendation to use a prediction model in

clinical practice must be underpinned by robust evi-
dence on the reproducibility of the models, their predict-
ive performance across various settings, and their
clinical utility. An individual participant data (IPD)
meta-analysis that combines multiple datasets has great
potential to externally validate existing models [7–10].
In addition to increasing the sample size beyond what is
feasibly achievable in a single study, access to IPD from
multiple studies offers the unique opportunity to evalu-
ate the generalisability of the predictive performance of
existing models across a range of clinical settings. This
approach is particularly advantageous for predicting the
rare but serious condition of early-onset pre-eclampsia
that affects 0.5% of all pregnancies [11].

We undertook an IPD meta-analysis to externally val-
idate the predictive performance of existing multivari-
able models to predict the risk of pre-eclampsia in
pregnant women managed within the National Health
Service (NHS) in the UK and assessed the clinical utility
of the models using decision curve analysis.

Methods
International Prediction of Pregnancy Complications (IPPIC)
Network
We undertook a systematic review of reviews by search-
ing Medline, Embase, and the Cochrane Library includ-
ing DARE (Database of Abstracts of Reviews of Effects)
databases, from database inception to March 2017, to
identify relevant systematic reviews on clinical character-
istics, biochemical, and ultrasound markers for predict-
ing pre-eclampsia [12]. We then identified research
groups that had undertaken studies reported in the sys-
tematic reviews and invited the authors of relevant stud-
ies and cohorts with data on prediction of pre-eclampsia
to share their IPD [13] and join the IPPIC (International
Prediction of Pregnancy Complications) Collaborative
Network. We also searched major databases and data re-
positories, and directly contacted researchers to identify
relevant studies, or datasets that may have been missed,
including unpublished research and birth cohorts. The
Network includes 125 collaborators from 25 countries, is
supported by the World Health Organization, and has
over 5 million IPD containing information on various
maternal and offspring complications. Details of the
search strategy are given elsewhere [12].

Selection of prediction models for external validation
We updated our previous literature search of prediction
models for pre-eclampsia [3] (July 2012–December
2017), by searching Medline via PubMed. Details of the
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search strategy and study selection are given elsewhere
(Supplementary Table S1, Additional file 1) [12]. We
evaluated all prediction models with clinical, biochem-
ical, and ultrasound predictors at various gestational
ages (Supplementary Table S2, Additional file 1) for pre-
dicting any, early (delivery < 34 weeks), and late (delivery
≥ 34 weeks’ gestation) onset pre-eclampsia. We did not
validate prediction models if they did not provide the
full model equation (including the intercept and pre-
dictor effects), if any predictor in the model was not
measured in the validation cohorts, or if the outcomes
predicted by the model were not relevant.

Inclusion criteria for IPPIC validation cohorts
We externally validated the models in IPPIC IPD co-
horts that contained participants from the UK (IPPIC-
UK subset) to determine their performance within the
context of the UK healthcare system and to reduce the
heterogeneity in the outcome definitions [14, 15]. We in-
cluded UK participant whole datasets and UK partici-
pant subsets of international datasets (where country
was recorded). If a dataset contained IPD from multiple
studies, we checked the identity of each study to avoid
duplication. We excluded cohorts if one or more of the
predictors (i.e. those variables included in the model’s
equation) were not measured or if there was no variation
in the values of model predictors across individuals (i.e.
every individual had the same predicted probability due
to strict eligibility criteria in the studies). We also ex-
cluded cohorts where no individuals or only one individ-
ual developed pre-eclampsia. Since the published models
were intended to predict the risk of pre-eclampsia in
women with singleton pregnancies only, we excluded
women with multi-foetal pregnancies.

IPD collection and harmonisation
We obtained data from cohorts in prospective and retro-
spective observational studies (including cohorts nested
within randomised trials, birth cohorts, and registry-
based cohorts). Collaborators sent their pseudo-
anonymised IPD in the most convenient format for
them, and we then formatted, harmonised, and cleaned
the data. Full details on the eligibility criteria, selection
of the studies and datasets, and data preparation have
previously been reported in our published protocol [13].

Quality assessment of the datasets
Two independent reviewers assessed the quality of each
IPD cohort using a modified version of the PROBAST
(Prediction study Risk of Bias Assessment) tool [16]. The
tool assesses the quality of the cohort datasets and indi-
vidual studies, and we used three of the four domains:
participant selection, predictors, and outcomes. The
fourth domain ‘analysis’ was not relevant for assessing

the quality of the collected data, as we performed the
prediction model analyses ourselves since we had access
to the IPD. We classified the risk of bias to be low, high,
or unclear for each of the relevant domains. Each do-
main included signalling questions that are rated as ‘yes’,
‘probably yes’, ‘probably no’, ‘no’, or ‘no information’.
Any signalling question that was rated as ‘probably no’
or ‘no’ was considered to have potential for bias and was
classed as high risk of bias in that domain. The overall
risk of bias of an IPD dataset was considered to be low if
it scored low in all domains, high if any one domain had
a high risk of bias, and unclear for any other
classifications.

Statistical analysis
We summarised the total number of participants and
number of events in each dataset, and the overall num-
bers available for validating each model.

Missing data
We could validate the predictive performance of a model
only when the values of all its predictors were available
for participants in at least one IPD dataset, i.e. in data-
sets where none of the predictors was systematically
missing (unavailable for all participants). In such data-
sets, when data were missing for predictors and out-
comes in some participants (‘partially missing data’), we
used a 3-stage approach. First, where possible, we filled
in the actual value that was missing using knowledge of
the study’s eligibility criteria or by using other available
data in the same dataset. For example, replacing nul-
liparous = 1 for all individuals in a dataset if only nul-
liparous women were eligible for inclusion. Secondly,
after preliminary comparison of other datasets with the
information, we used second trimester information in
place of missing first trimester information. For example,
early second trimester values of body mass index (BMI)
or mean arterial pressure (MAP) were used if the first
trimester values were missing. Where required, we re-
classified into categories. Women of either Afro-
Caribbean or African-American origin were classified as
Black, and those of Indian or Pakistani origin as Asian.
Thirdly, for any remaining missing values, we imputed
all partially missing predictor and outcome values using
multiple imputation by chained equations (MICE) [17,
18]. After preliminary checks comparing baseline char-
acteristics in individuals with and without missing values
for each variable, data were assumed to be missing at
random (i.e. missingness conditional on other observed
variables).
We conducted the imputations in each IPD dataset

separately. This approach acknowledges the clustering of
individuals within a dataset and retains potential hetero-
geneity across datasets. We generated 100 imputed
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datasets for each IPD dataset with any missing predictor
or outcome values. In the multiple imputation models,
continuous variables with missing values were imputed
using linear regression (or predictive mean matching if
skewed), binary variables were imputed using logistic re-
gression, and categorical variables were imputed using
multinomial logistic regression. Complete predictors
were also included in the imputation models as auxiliary
variables. To retain congeniality between the imputation
models and predictive models [19], the scale used to im-
pute the continuous predictors was chosen to match the
prediction models. For example, pregnancy-associated
plasma protein A (PAPP-A) was modelled on the log
scale in many models and was therefore imputed as log(-
PAPP-A). We undertook imputation checks by looking
at histograms, summary statistics, and tables of values
across imputations, as well as by checking the trace plots
for convergence issues.

Evaluating predictive performance of models
For each model that we could validate, we applied the
model equation to each individual i in each (imputed)
dataset. For each prediction model, we summarised the
overall distribution of the linear predictor values for
each dataset using the median, interquartile range, and
full range, averaging statistics across imputations where
necessary [20].
We examined the predictive performance of each

model separately, using measures of discrimination and
calibration, firstly in the IPD for each available dataset
and then at the meta-analysis level. We assessed model
discrimination using the C-statistic with a value of 1 in-
dicating perfect discrimination and 0.5 indicating no dis-
crimination beyond chance [21]. Good values of the C-
statistic are hard to define, but we generally considered
C-statistic values of 0.6 to 0.75 as moderate discrimin-
ation [22]. Calibration was assessed using the calibration
slope (ideal value = 1, slope < 1 indicates overfitting,
where predictions are too extreme) and the calibration-
in-the-large (ideal value = 0). For each dataset containing
over 100 outcome events, we also produced calibration
plots to visually compare observed and predicted prob-
abilities when there were enough events to categorise
participants into 10 risk groups. These plots also in-
cluded a lowess smoothed calibration curve over all
individuals.
Where data had been imputed in a particular IPD

dataset, the predictive performance measures were cal-
culated in each of the imputed datasets, and then
Rubin’s rules were applied to combine statistics (and
corresponding standard errors) across imputations [20,
23, 24].
When it was possible to validate a model in multiple

cohorts, we summarised the performance measures

across cohorts using a random-effects meta-analysis esti-
mated using restricted maximum likelihood (for each
performance measure separately) [25, 26]. Summary
(average) performance statistics were reported with 95%
confidence intervals (derived using the Hartung-Knapp-
Sidik-Jonkman approach as recommended) [27, 28]. We
also reported the estimate of between-study heterogen-
eity (τ2) and the proportion of variability due to
between-study heterogeneity (I2). Where there were five
or more cohorts in the meta-analysis, we also reported
the approximate 95% prediction interval (using the t-dis-
tribution to account for uncertainty in τ) [29]. We only
reported the model performance in individual cohorts if
the total number of events was over 100. We also com-
pared the performance of the models in the same valid-
ation cohort where possible. We used forest plots to
show a model’s performance in multiple datasets and to
compare the average performance (across datasets) of
multiple models.
A particular challenge is to predict pre-eclampsia in

nulliparous women as they have no history from prior
pregnancies (which are strong predictors); therefore, we
also conducted a subgroup analysis in which we assessed
the performance of the models in only nulliparous
women from each study.

Decision curve analysis
For each pre-eclampsia outcome (any, early, or late on-
set), we compared prediction models using decision
curve analysis [30, 31]. Decision curves show the net
benefit (i.e. benefit versus harm) over a range of clinic-
ally relevant threshold probabilities. The model with the
greatest net benefit for a particular threshold is consid-
ered to have the most clinical value. For this investiga-
tion, we chose the IPD that was most frequently used in
the external validation of the prediction models and
which allowed multiple models to be compared in the
same IPD (thus enabling a direct, within-dataset com-
parison of the models).
All statistical analyses were performed using Stata MP

Version 15. TRIPOD guidelines were followed for trans-
parent reporting of risk prediction model validation
studies [32, 33]. Additional details on the missing data
checks, performance measures, meta-analysis, and deci-
sion curves are given in Supplementary Methods, Add-
itional file 1 [20, 26, 34–45].

Results
Of the 131 models published on prediction of pre-
eclampsia, only 67 reported the full model equation
needed for validation (67/131, 51%) (Supplementary
Table S3, Additional file 1). Twenty-four of these 67
models (24/67, 36%) met the inclusion criteria for exter-
nal validation in the IPD datasets (Table 1) [35, 46–56],
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and the remaining models (43/67, 64%) did not meet the
criteria due to the required predictor information not
being available in the IPD datasets (Fig. 1).

Characteristics and quality of the validation cohorts
IPD from 11 cohorts contained within the IPPIC net-
work contained relevant predictors and outcomes that
could be used to validate at least one of the 24 predic-
tion models. Four of the 11 validation cohorts were pro-
spective observational studies (Allen 2017, POP, SCOPE,
and Velauthar 2012) [36, 37, 45], four were nested
within randomised trials (Chappell 1999, EMPOWAR,
Poston 2006, and UPBEAT) [39–42], and three were
from prospective registry datasets (ALSPAC, AMND,
and St George’s) [38, 43, 44, 57]. Six cohorts included
pregnant women with high and low risk of pre-
eclampsia [37, 38, 43–45], four included high-risk
women only [39–42], and one included low-risk women
only [36]. Two of the 11 cohorts (SCOPE, POP) included
only nulliparous women with singleton pregnancies who
were at low risk [36] and at any risk of pre-eclampsia
[45]. In the other 9 cohorts, the proportion of nullipar-
ous women ranged from 43 to 65%. Ten of the 11 co-
horts reported on any-, early-, and late-onset pre-
eclampsia, while one had no women with early-onset
pre-eclampsia [40]. The characteristics of the validation
cohorts and a summary of the missing data for each pre-
dictor and outcome are provided in Supplementary Ta-
bles S4, S5, and S6 (Additional file 1), respectively.
A fifth of all validation cohorts (2/11, 18%) were

classed as having an overall low risk of bias for all three
PROBAST domains of participant selection, predictor
evaluation, and outcome assessment. Seven (7/11, 64%)
had low risk of bias for participant selection domain,
and ten (10/11, 91%) had low risk of bias for predictor
assessment, while one had an unclear risk of bias for that
domain. For outcome assessment, half of all cohorts had
low risk of bias (5/11, 45%) and it was unclear in the rest
(6/11, 55%) (Supplementary Table S7, Additional file 1).

Characteristics of the validated models
All of the models we validated were developed in unse-
lected populations of high- and low-risk women. About
two thirds of the models (63%, 15/24) included only
clinical characteristics as predictors [35, 46, 47, 49, 51–
53, 55], five (21%) included clinical characteristics and
biomarkers [46, 48, 50, 54], and four (17%) included
clinical characteristics and ultrasound markers [50, 56].
Most models predicted the risk of pre-eclampsia using
first trimester predictors (21/24, 88%), and three using
first and second trimester predictors (13%). Eight models
predicted any-onset pre-eclampsia, nine early-onset, and
seven predicted late-onset pre-eclampsia (Table 1). The
sample size of only a quarter of the models (25%, 6/24)

[35, 47, 48, 56] was considered adequate, based on hav-
ing at least 10 events per predictor evaluated to reduce
the potential for model overfitting.

External validation and meta-analysis of predictive
performance
We validated the predictive performance of each of the
24 included models in at least one and up to eight valid-
ation cohorts. The distributions of the linear predictor
and the predicted probability are shown for each model
and validation cohort in Supplementary Table S8 (Add-
itional file 1). Performance of models is given for each
cohort separately (including smaller datasets) in Supple-
mentary Table S9 (Additional file 1).

Performance of models predicting any-onset pre-eclampsia
Two clinical characteristics models (Plasencia 2007a;
Poon 2008) with predictors such as ethnicity, family his-
tory of pre-eclampsia, and previous history of pre-
eclampsia showed reasonable discrimination in valid-
ation cohorts with summary C-statistics of 0.69 (95% CI
0.53 to 0.81) for both models (Table 2). The models
were potentially overfitted (summary calibration slope <
1) indicating extreme predictions compared to observed
events, with wide confidence intervals, and large hetero-
geneity in discrimination and calibration (Table 2). The
third model (Wright 2015a) included additional predic-
tors such as history of systemic lupus erythematosus,
anti-phospholipid syndrome, history of in vitro fertilisa-
tion, chronic hypertension, and interval between preg-
nancies, and showed less discrimination (summary C-
statistic 0.62, 95% CI 0.48 to 0.75), with observed overfit-
ting (summary calibration slope 0.64) (Table 2).
The three models with clinical and biochemical pre-

dictors (Baschat 2014a; Goetzinger 2010; Odibo 2011a)
showed moderate discrimination (summary C-statistics
0.66 to 0.72) (Table 2). We observed underfitting (sum-
mary calibration slope > 1) with predictions that do not
span a wide enough range of probabilities compared to
what was observed in the validation cohorts (Fig. 2).
Amongst these three models, the Odibo 2011a model
with ethnicity, BMI, history of hypertension, and PAPP-
A as predictors showed the highest discrimination (sum-
mary C-statistic 0.72, 95% CI 0.51 to 0.86), with a sum-
mary calibration slope of 1.20 (95% CI 0.24 to 2.00) due
to heterogeneity in calibration performance across the
three cohorts.
When validated in individual cohorts, the Odibo 2011a

model demonstrated better discrimination in the POP
cohort of any risk nulliparous women (C-statistics 0.78,
95% CI 0.74 to 0.81) than in the St George’s cohort of
all pregnant women (C-statistics 0.67, 95% CI 0.65 to
0.69). The calibration estimates for Odibo 2011a model
in these two cohorts showed underfitting in the POP
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Table 1 Pre-eclampsia prediction model equations externally validated in the IPPIC-UK cohorts

Model
no.

Author
(year)

Predictor category Prediction model equation for linear predictor (LP)

Trimester 1 any-onset pre-eclampsia models

1 Plasencia
2007a

Clinical characteristics LP = − 6.253 + 1.432(if Afro-Caribbean ethnicity) + 1.465(if mixed ethnicity) + 0.084(BMI) + 0.81(if
woman’s mother had PE) − 1.539(if parous without previous PE) + 1.049(if parous with previous
PE)

2 Poon 2008 Clinical characteristics LP = − 6.311 + 1.299(if Afro-Caribbean ethnicity) + 0.092(BMI) + 0.855(if woman’s mother had
PE) − 1.481(if parous without previous PE) + 0.933(if parous with previous PE)

3 Wright
2015a*

Clinical characteristics Mean gestational age at delivery with PE = 54.3637 − 0.0206886(age, years - 35, if age≥ 35) +
0.11711(height, cm - 164) − 2.6786(if Afro-Caribbean ethnicity) − 1.129(if South Asian ethnicity)
− 7.2897(if chronic hypertension) − 3.0519(if systemic lupus erythematosus or antiphospholipid
syndrome) − 1.6327(if conception by in vitro fertilisation) − 8.1667(if parous with previous PE) +
0.0271988(if parous with previous PE, previous gestation in weeks - 24)2 − 4.335(if parous with
no previous PE) − 4.15137651(if parous with no previous PE, interval between pregnancies in
years)−1 + 9.21473572(if parous with no previous PE, interval between pregnancies in years)−0.5

− 0.0694096(if no chronic hypertension, weight in kg – 69) − 1.7154(if no chronic hypertension
and family history of PE) − 3.3899(if no chronic hypertension and diabetes mellitus type 1 or 2)

4 Baschat
2014a

Clinical characteristics and
biochemical markers

LP = − 8.72 + 0.157 (if nulliparous) + 0.341(if history of hypertension) + 0.635(if prior PE) +
0.064(MAP) − 0.186(PAPP-A, Ln MoM)

5 Goetzinger
2010

Clinical characteristics and
biochemical markers

LP = − 3.25 + (0.51(if PAPP-A < 10th percentile) + 0.93(if BMI > 25) + 0.94(if chronic hyperten-
sion) + 0.97(if diabetes) + 0.61(if African American ethnicity)

6 Odibo
2011a

Clinical characteristics and
biochemical markers

LP = − 3.389 − 0.716(PAPP-A, MoM) + 0.05(BMI) + 0.319(if black ethnicity) + 1.57(if history of
chronic hypertension)

7 Odibo
2011b

Clinical characteristics and
ultrasound markers

LP = − 3.895 − 0.593(mean uterine PI) + 0.944(if pre-gestational diabetes) + 0.059(BMI) + 1.532(if
history of chronic hypertension)

Trimester 2 any-onset pre-eclampsia models

8 Yu 2005a Clinical characteristics and
ultrasound markers

LP = 1.8552 + 5.9228(mean uterine PI)−2 − 14.4474(mean uterine PI)−1 − 0.5478(if smoker) +
0.6719(bilateral notch) + 0.0372(age) + 0.4949(if black ethnicity) + 1.5033(if history of PE) −
1.2217(if previous term live birth) + 0.0367(T2 BMI)

Trimester 1 early-onset pre-eclampsia models

9 Baschat
2014b

Clinical characteristics LP = − 5.803 + 0.302(if history of diabetes) + 0.767 (if history of hypertension) + 0.00948(MAP)

10 Crovetto
2015a

Clinical characteristics LP = − 5.177 + (2.383 if black ethnicity) − 1.105(if nulliparous) + 3.543(if parous with previous
PE) + 2.229(if chronic hypertension) + 2.201(if renal disease)

11 Kuc 2013a Clinical characteristics LP = − 6.790 − 0.119(maternal height, cm) + 4.8565(maternal weight, Ln kg) + 1.845(if
nulliparous) + 0.086(maternal age, years) + 1.353(if smoker)

12 Plasencia
2007b

Clinical characteristics LP = − 6.431 + 1.680(if Afro-Caribbean ethnicity) + 1.889(if mixed ethnicity) + 2.822(if parous
with previous PE)

13 Poon 2010a Clinical characteristics LP = − 5.674 + 1.267(if black ethnicity) + 2.193(if history of chronic hypertension) − 1.184(if
parous without previous PE) + 1.362(if parous with previous PE) + 1.537(if conceived with
ovulation induction)

14 Scazzocchio
2013a

Clinical characteristics LP = − 7.703 + 0.086(BMI) + 1.708(if chronic hypertension) + 4.033(if renal disease) + 1.931(if
parous with previous PE) + 0.005(if parous with no previous PE)

15 Wright
2015b*

Clinical characteristics Same as model 3

16 Poon 2009a Clinical characteristics and
biochemical markers

LP = − 6.413 − 3.612 (PAPP-A, Ln MoM) + 1.803(if history of chronic hypertension) + 1.564(if
black ethnicity) − 1.005(if parous without previous PE) + 1.491(if parous with previous PE)

Trimester 2 early-onset pre-eclampsia models

17 Yu 2005b Clinical characteristics and
ultrasound markers

LP = − 9.81223 + 2.10910(mean uterine PI)3 − 1.79921(mean uterine PI)3 + 1.059463(if bilateral
notch)

Trimester 1 late-onset pre-eclampsia models

18 Crovetto
2015b

Clinical characteristics LP = − 5.873 − 0.462(if white ethnicity) + 0.109(BMI) − 0.825(if nulliparous) + 2.726(if parous with
previous PE) + 1.956(if chronic hypertension) − 0.575(if smoker)

19 Kuc 2013b Clinical characteristics LP = − 14.374 + 2.300(maternal weight, Ln kg) + 1.303(if nulliparous) + 0.068(maternal age,
years)

20 Plasencia Clinical characteristics LP = − 6.585 + 1.368(if Afro-Caribbean ethnicity) + 1.311(if mixed ethnicity) + 0.091(BMI) +
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Table 1 Pre-eclampsia prediction model equations externally validated in the IPPIC-UK cohorts (Continued)

Model
no.

Author
(year)

Predictor category Prediction model equation for linear predictor (LP)

2007c 0.960(if woman’s mother had PE) − 1.663(if parous without previous PE)

21 Poon 2010b Clinical characteristics LP = − 7.860 + 0.034(maternal age, years) + 0.096(BMI) + 1.089(if black ethnicity) + 0.980(if Indian
or Pakistani ethnicity) + 1.196(if mixed ethnicity) + 1.070(if woman’s mother had PE) − 1.413(if
parous without previous PE) + 0.780(if parous with previous PE)

22 Scazzocchio
2013b

Clinical characteristics LP = 6.135 + 2.124(if previous PE) + 1.571(if chronic hypertension) + 0.958(if diabetes) + 1.416(if
thrombophilic condition) − 0.487(if multiparous) + 0.093(BMI)

23 Poon 2009b Clinical characteristics and
biochemical markers

LP = − 6.652 − 0.884(PAPP-A, Ln MoM) + 1.127(if family history of PE) + 1.222(if black
ethnicity) + 0.936(if Indian or Pakistani ethnicity) + 1.335(if mixed ethnicity) + 0.084(BMI) −
1.255(if parous without previous PE) + 0.818(if parous with previous PE)

Trimester 2 late-onset pre-eclampsia models

24 Yu 2005c Clinical characteristics and
ultrasound markers

LP = 0.7901 + 5.1473(mean uterine PI)−2 − 12.5152(mean uterine PI)−1 − 0.5575(if smoker) +
0.5333(if bilateral notch) + 0.0328(age) + 0.4958(if black ethnicity) + 1.5109(if history of PE) +
1.1556(if previous term live birth) + 0.0378(BMI)

* The model for ‘mean gestational age at delivery with PE’ assumes a normal distribution with the predicted mean gestational age and SD=6.8833. The risk of
delivery with PE is then calculated as the area under the normal curve between 24 weeks and either 42 weeks for any onset PE (model 3) or 34 weeks for early-
onset PE (model 14). For more detail see Wright et al., 2015.

Fig. 1 Identification of prediction models for validation in IPPIC-UK cohorts
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Table 2 Summary estimates of predictive performance for each model across validation cohorts

Model
no.

Type of predictors Author (year) No. of
validation
cohorts

Total
no. of
women

Total
events

Summary estimate of performance statistic (95% CI), measures
of heterogeneity (I2, τ2)

C-statistic+ Calibration slope Calibration-in-the-
large

Any-onset pre-eclampsia

Trimester 1 models

1 Clinical Plasencia 2007a 3 3257 102 0.69 (0.53, 0.81)
I2 = 1%, τ2 = 0.001

0.69 (− 0.03, 1.41)
I2 = 45%, τ2 = 0.035

0.14 (− 1.47, 1.76)
I2 = 91%, τ2 = 0.380

2 Poon 2008 3 3257 102 0.69 (0.53, 0.81)
I2 = 3%, τ2 = 0.002

0.72 (− 0.03, 1.46)
I2 = 45%, τ2 = 0.037

0.002 (− 1.65, 1.66)
I2 = 92%, τ2 = 0.402

3 Wright 2015a 3 1916 76 0.62 (0.48, 0.75)
I2 = 0%, τ2 = 0

0.64 (− 0.18, 1.47)
I2 = 0%, τ2 = 0

0.95 (− 1.13, 3.03)
I2 = 93%, τ2 = 0.640

4 Clinical and biochemical
markers

Baschat 2014a 2 5257 287 0.71 (0.47, 0.87)
I2 = 0%, τ2 = 0

1.24 (0.00, 2.48)
I2 = 0%, τ2 = 0

− 0.43 (− 14.4, 13.55)
I2 = 98%, τ2 = 2.382

5 Goetzinger 2010 3 6811 343 0.66 (0.30, 0.90)
I2 = 93%, τ2 =
0.315

1.124 (− 0.60, 2.84)
I2 = 76%, τ2 = 0.356

− 0.97 (− 3.04, 1.11)
I2 = 97%, τ2 = 0.667

6 Odibo 2011a 3 59,892 1774 0.72 (0.51, 0.86)
I2 = 90%, τ2 =
0.101

1.16 (0.24, 2.08)
I2 = 93%, τ2 = 0.104

− 0.79 (− 2.62, 1.04)
I2 = 99%, τ2 = 0.511

7 Clinical and ultrasound markers Odibo 2011b 1 1145 28 0.53 (0.39, 0.66) 0.28 (− 0.64, 1.20) − 0.52 (− 0.91, − 0.13)

Trimester 2 models

8 Clinical and ultrasound markers Yu 2005a 1 4212 273 0.61 (0.57 to 0.65) 0.08 (0.01 to 0.14) Not estimable

Early-onset pre-eclampsia

Trimester 1 models

9 Clinical Baschat 2014b 5 22,781 204 0.68 (0.62, 0.73)
I2 = 0%, τ2 = 0

2.04 (0.56, 3.52)
I2 = 69%, τ2 = 0.692

− 0.10 (− 1.70 to 1.49)
I2 = 97%, τ2 = 1.535

10 Crovetto 2015a 3# 6424 21 0.58 (0.21, 0.88)
I2 = 69%, τ2 =
0.288

0.64 (− 4.01, 5.29)
I2 = 81%, τ2 = 0.217

− 0.58 (− 4.97, 3.81)
I2 = 95%, τ2 = 2.925

11 Kuc 2013a 6 212,038 1449 0.66 (0.61, 0.71)
I2 = 32%, τ2 =
0.011

0.42 (0.29, 0.55)
I2 = 33%, τ2 = 0.004

− 4.33 (− 5.41, − 3.25)
I2 = 99%, τ2 = 0.946

12 Plasencia 2007b 4# 6740 27 0.49 (0.43, 0.55)
I2 = 38%, τ2 =
0.005

0.51 (− 2.05, 3.08)
I2 = 0%, τ2 = 0

0.47 (− 0.80, 1.74)
I2 = 74%, τ2 = 0.452

13 Poon 2010a 3 6424 21 0.64 (0.31, 0.87)
I2 = 34%, τ2 =
0.105

0.99 (0.02, 1.96)
I2 = 0%, τ2 = 0

− 1.09 (− 4.89, 2.70)
I2 = 93%, τ2 = 2.175

14 Scazzocchio 2013a 3 6424 21 0.74 (0.37, 0.93)
I2 = 14%, τ2 =
0.057

0.75 (0.14, 1.36)
I2 = 0%, τ2 = 0

− 0.70 (− 3.89, 2.49)
I2 = 90%, τ2 = 1.481

15 Wright 2015b 2 1332 9 0.74 (0.04, 1.00)
I2 = 0%, τ2 = 0

0.92 (− 4.38, 6.22)
I2 = 0%, τ2 = 0

0.28 (− 14.34, 14.90)
I2 = 90%, τ2 = 2.395

16 Clinical and biochemical
markers

Poon 2009a 1 4212 10 0.74 (0.51, 0.89) 0.45 (0.21, 0.69) − 2.67 (− 3.35, − 1.99)

Trimester 2 models

17 Clinical and ultrasound markers Yu 2005b 1 4212 10 0.91 (0.83, 0.95) 0.56 (0.29, 0.82) 2.47 (1.72, 3.23)

Late-onset pre-eclampsia

Trimester 1 models

18 Clinical Crovetto 2015b 5 7785 384 0.63 (0.46, 0.78)
I2 = 87%, τ2 =
0.264

0.56 (− 0.01 to
1.13)
I2 = 92%, τ2 = 0.179

− 0.05 (− 1.65, 1.55)
I2 = 98%, τ2 = 1.615

19 Kuc 2013b 8 213,532 5716 0.62 (0.57, 0.67)
I2 = 87%, τ2 =
0.025

0.66 (0.50, 0.82)
I2 = 60%, τ2 = 0.007

− 1.91 (− 2.24, − 1.59)
I2 = 98%, τ2 = 0.124

20 Plasencia 2007c 3 3257 90 0.67 (0.54, 0.78) 0.61 (0.04, 1.18) 0.20 (− 1.11, 1.52)
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cohort (calibration slope 1.49, 95% CI 1.33 to 1.65) and
reasonably adequate calibration in the St George’s co-
hort (slope 0.96, 95% CI 0.89 to 1.04). The calibration-
in-the-large of the Odibo 2011a showed systematic over-
prediction in the St George’s cohort (− 0.90, 95% CI −
0.95 to − 0.85) and less so in the POP cohort with value
close to 0. Both Baschat 2014a and Goetzinger 2010
models also showed moderate discrimination in the POP
cohort with C-statistics ranging from 0.70 to 0.76. When

validated in the POP cohort, the Baschat 2014a model
systematically underpredicted risk with calibration-in-
the-large (0.66, 95% CI 0.53 to 0.78) and less so for the
Goetzinger 2010 model. One model (Yu 2005a) that in-
cluded second trimester ultrasound markers and clinical
characteristics had low discrimination (C-statistic 0.61,
95% CI 0.57 to 0.65) and poor calibration (slope 0.08,
95% CI 0.01 to 0.14), and was only validated in the POP
cohort (Table 3).

Table 2 Summary estimates of predictive performance for each model across validation cohorts (Continued)

Model
no.

Type of predictors Author (year) No. of
validation
cohorts

Total
no. of
women

Total
events

Summary estimate of performance statistic (95% CI), measures
of heterogeneity (I2, τ2)

C-statistic+ Calibration slope Calibration-in-the-
large

I2 = 0%, τ2 = 0 I2 = 14%, τ2 = 0.008 I2 = 85%, τ2 = 0.234

21 Poon 2010b 3 3257 90 0.65 (0.48, 0.79)
I2 = 25%, τ2 =
0.020

0.57 (0.08, 1.05)
I2 = 0%, τ2 = 0

0.12 (− 1.59, 1.84)
I2 = 91%, τ2 = 0.430

22 Scazzocchio
2013b

1 658 26 0.60 (0.48, 0.71) 0.56 (− 0.17, 1.29) 0.52 (0.13, 0.92)

23 Clinical and biochemical
markers

Poon 2009b 1 1045 13 0.68 (0.55, 0.79) 0.80 (0.26, 1.34) − 0.35 (− 0.90, 0.21)

Trimester 2 models

24 Clinical and ultrasound markers Yu 2005c 1 4212 263 0.61 (0.57, 0.64) 0.08 (0.05, 0.15) Not estimable

# Number of validation cohorts is 2 for the calibration slope as it could not be estimated reliably in SCOPE (for models 10 and 12) or POP (for model
12), and was therefore excluded from the meta-analysis.
+ The C-statistic was pooled on the logit scale, therefore I2 is for logit(C-statistic).
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Fig. 2 Calibration plots for clinical characteristic and biomarker models predicting any-onset pre-eclampsia (cohorts with ≥ 100 events)
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Performance of models predicting early-onset pre-eclampsia
We then considered the prediction of early-onset pre-
eclampsia. The two clinical characteristics models,
Baschat 2014b with predictors such as history of dia-
betes, hypertension, and mean arterial pressure [46], and
Kuc 2013a model with maternal height, weight, parity,
age, and smoking status [49], showed reasonable dis-
crimination (summary C-statistics 0.68, 0.66, respect-
ively) with minimal heterogeneity when validated in up
to six datasets. The summary calibration was suboptimal
with either under- or overfitting. When validated in indi-
vidual cohorts (Poston 2006, St George’s, and AMND
cohorts), the Kuc model showed moderate discrimin-
ation in the St George’s and AMND cohorts of unse-
lected pregnant women with values ranging from 0.64 to
0.68, respectively. But the model was overfitted in both
the cohorts (calibration slope 0.34 and 0.47) and system-
atically overpredicted the risks (calibration-in-the-large
> 1). In the external cohort of obese pregnant women
(Poston 2006), Baschat 2014b model showed moderate
discrimination (C-statistic 0.67, 95% CI 0.63 to 0.72).
There was some evidence that predictions did not span
a wide enough range of probabilities and that the model
systematically underpredicted the risks (Table 3).
The other six models were validated with a combined

total of less than 50 events between the cohorts [35, 47,
51, 52, 55]. Of these, the clinical characteristics models
of Scazzocchio 2013a and Wright 2015b, and the clinical
and biochemical marker-based model of Poon 2009a
showed promising discrimination (summary C-statistic
0.74), but with imprecise estimates indicative of the
small sample size in the validation cohorts. All three
models were observed to be overfitted (summary calibra-
tion slopes ranging from 0.45 to 0.91), though again con-
fidence intervals were wide. The second trimester Yu
2005b model with ultrasound markers and clinical char-
acteristics was validated in one cohort with 10 events,
resulting in very imprecise estimates but still indicative
of the model being overfitted (calibration slope 0.56,
95% CI 0.29 to 0.82).

Performance of models predicting late-onset pre-eclampsia
Of the five clinical characteristics models, four (Crovetto
2015b, Kuc 2010b, Plasencia 2007c, Poon 2010b) were
validated across cohorts. The models showed reasonable
discrimination with summary C-statistics ranging be-
tween 0.62 and 0.67 [47, 49, 51, 52]. We observed over-
fitting (summary calibration slope 0.56 to 0.66) with
imprecision except for the Kuc 2013b model. The
models appeared to either systematically underpredict
(Plasencia 2007c, Poon 2010b) or overpredict (Crovetto
2015b, Kuc 2013b), with imprecise calibration-in-the-
large estimates. There was moderate to large heterogen-
eity in both discrimination and calibration measures.

When validated in the POP cohort of nulliparous
women, the Crovetto 2015b model with predictors such
as maternal ethnicity, parity, chronic hypertension,
smoking status, and previous history of pre-eclampsia
showed good discrimination (C-statistic 0.78, 95% CI
0.75 to 0.81) but with evidence of some underfitting
(calibration slope 1.25, 95% CI 1.10 to 1.38); the model
also systematically underpredicted the risks (calibration-
in-the-large 1.31, 95% CI 1.18 to 1.44). The correspond-
ing performance of the Kuc 2010b model in the POP co-
hort showed low discrimination (C-statistic 0.60, 95% CI
0.56 to 0.64) and calibration (calibration slope 0.67, 95%
CI 0.45 to 0.89). In the ALSPAC, St George’s, and
AMND unselected pregnancy cohorts, the Kuc 2010b
model showed varied discrimination with C-statistics
ranging from 0.64 to 0.84, but with overfitting (calibra-
tion slope < 1) and systematic overprediction (calibra-
tion-in-the-large − 1.97, 95% CI − 1.57 to − 1.44). In the
POP cohort, the Yu 2005c model with clinical and sec-
ond trimester ultrasound markers had a C-statistic of
0.61 (95% CI 0.57 to 0.64) with severe overfitting (cali-
bration slope 0.08, 95% CI 0.01 to 0.15).
Supplementary Table S10 (Additional file 1) shows the

performance of the models in nulliparous women only
in the IPPIC-UK datasets and in the POP cohort only
separately.

Heterogeneity
Where it was possible to estimate it, heterogeneity
across studies varied from small (e.g. Plasencia 2007a
and Poon 2008 models had I2 ≤ 3%, τ2 ≤ 0.002) to large
heterogeneity (e.g. Goetzinger 2010 and Odibo 2011a
models had I2 ≥ 90%, τ2 ≥ 0.1) for the C-statistic (on the
logit scale), and moderate to large heterogeneity in the
calibration slope for about two thirds (8/13, 62%) of all
models validated in datasets with around 100 events in
total. All models validated in multiple IPD datasets had
high levels of heterogeneity in calibration-in-the-large
performance. For the majority of models validated in co-
horts with a combined event size of around 100 events
in total (9/13, 69%), the summary calibration slope was
less than or equal to 0.7 suggesting a general concern of
overfitting in the model development (as ideal value is 1,
and values < 1 indicate predictions are too extreme). The
exceptions to this were Baschat 2014a, Goetzinger 2010,
and Odibo 2011a models (for any-onset pre-eclampsia)
and Baschat 2014b (for early-onset pre-eclampsia).

Decision curve analysis
We compared the clinical utility of models for any-onset
pre-eclampsia in SCOPE (3 models), Allen 2017 (6
models), UPBEAT (4 models), and POP cohorts (3
models) as they allowed us to compare more than one
model. Of the three models validated in the POP cohort
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[46, 48, 50], the Odibo 2011a model had the highest
clinical utility for a range of thresholds for predicting
any-onset pre-eclampsia (Fig. 3). But this net benefit was
not observed either for Odibo 2011a or for other models
when validated in the other cohorts. Decision curves for
early- and late-onset pre-eclampsia models are given in
Supplementary Figure S1 and S2 (Additional file 1), re-
spectively. These showed that there was little opportun-
ity for net benefit of the early-onset pre-eclampsia
prediction models, primarily because of how rare the
condition is. For late-onset pre-eclampsia, the models
showed some net benefit across a very narrow range of
threshold probabilities.

Discussion
Summary of findings
Of the 131 prediction models developed for predicting
the risk of pre-eclampsia, only half published the model
equation that is necessary for others to externally valid-
ate these models, and of those remaining, only 25 in-
cluded predictors available to us in the datasets of the
validation cohorts. One model could not be validated be-
cause of too few events in the validation cohorts. In

general, models moderately discriminated between
women who did and did not develop any-, early-, or
late-onset pre-eclampsia. The performance did not ap-
pear to vary noticeably according to the type of predic-
tors (clinical characteristics only; additional biochemical
or ultrasound markers) or the trimester. Overall calibra-
tion of predicted risks was generally suboptimal. In par-
ticular, the summary calibration slope was often much
less than 1, suggesting that the developed models were
overfitted to their development dataset and thus do not
transport well to new populations. Even for those with
promising summary calibration performance (e.g. sum-
mary calibration slopes close to 1 from the meta-
analysis), we found large heterogeneity across datasets,
indicating that the calibration performance of the
models is unlikely to be reliable across all UK settings
represented by the validation cohorts. Some models
showed promising performance in nulliparous women,
but this was not observed in other populations.

Strengths and limitations
To our knowledge, this is the first IPD meta-analysis to ex-
ternally validate existing prediction models for pre-
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Fig. 3 Decision curves for models of any-onset pre-eclampsia
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eclampsia. Our comprehensive search identified over 130
published models, illustrating the desire for risk prediction
in this field, but also the confusion about which models are
reliable. The global IPPIC Network brought together key
researchers involved in this field, and their cohorts provided
access to the largest IPD on prediction of pregnancy com-
plications. We evaluated whether any of the identified
models demonstrated good predictive performance in the
UK health system, both on average and within individual
cohorts. Access to raw data meant that we could exclude
ineligible women, account for timing of predictor measure-
ment and outcome, and increase the sample size for rare
outcomes such as early-onset pre-eclampsia.
We could only validate 24 of the 131 published pre-

eclampsia prediction models and were restricted by poor
reporting of published models, as well as the unavailabil-
ity of predictors used in some reported models within
our IPD. It is possible that a better performing model
exists which we have been unable to validate. However,
the issue of missing predictors may also reflect the avail-
ability of these predictors in routine clinical practice,
and the inconvenience in their measurement, highlight-
ing the need for a practical prediction model with easy
to measure and commonly reported variables [58].
We limited our validation to UK datasets to reduce

the heterogeneity arising from outcome definitions and
variations in management. Despite this, often consider-
able heterogeneity remained in predictive performance.
Direct comparison of the prediction models is difficult
due to different datasets contributing towards the valid-
ation of each model.

Comparison to existing studies
Currently, none of the published models on pre-
eclampsia has been recommended for clinical practice.
We consider the following issues to contribute to this
phenomenon. Firstly, most of the models have never
been externally validated, and their performance in other
populations is unknown [6, 37, 59–61]. Secondly, even
when validated, the findings are limited by the relatively
small numbers of events in the validation cohort to draw
robust conclusions, for example about calibration per-
formance. Recently, first trimester models for any pre-
eclampsia comprising of easily available predictors were
validated in two separate Dutch cohorts in line with
current recommendations. Both validation cohorts com-
prised of less than 100 events each, which is recom-
mended as the minimum sample size required [6].
Discrimination of these models was moderate and simi-
lar to what we observed. Most models showed overfit-
ting and systematic overprediction of the risks. The
clinical utility of the best performing models showed net
benefit over a narrow range of probabilities. Thirdly,
there is fatigue amongst the research community and

the clinicians due to the vast numbers of prediction
models that have been published with various combina-
tions and permutations of predictor variables, often in
overlapping populations without external validation [35,
51, 53, 54, 62–79].
Fourthly, many models have been developed by con-

sidering them as a ‘screening test’ for pre-eclampsia,
similar to the approach used in Down syndrome screen-
ing with biomarkers. In addition to the lack of informa-
tion on multiple of the median (MoM) values in
validating cohorts, such an approach has inherent limita-
tions. The models’ performances are reported in terms
of detection rate (sensitivity) for a specific false positive
rate of 10% [35, 51, 54, 63–66, 68–71, 75, 77–79], but
unlike diagnostic tests (where focus is on sensitivity and
specificity), when predicting future outcomes it is more
important to provide absolute risk predictions, poten-
tially across the whole spectrum of risk (from 0 to 1)
[80]. Such risk predictions then guide patient counsel-
ling, shared clinical decision-making, and personalisation
of healthcare. As such, calibration of such risk predic-
tions must be checked. In population-based cohorts,
only a small proportion of individuals are at high risk of
pre-eclampsia, with a preponderance of those at low or
very low risk. However, the performance of many
models continues to be evaluated and compared solely
on the basis of their discrimination ability, with calibra-
tion ignored [81].
In the recent ASPRE (Combined Multimarker Screen-

ing and Randomized Patient Treatment with Aspirin for
Evidence-Based Preeclampsia Prevention) trial [82], as-
pirin significantly reduced the risk of pre-eclampsia in
women stratified for high risk of preterm pre-eclampsia
using the prediction model by Akolekar 2013 [62]. In
the control group, 4.3% of women were considered to
have preterm pre-eclampsia against the 7.6% expected to
be identified by the model. The discrimination of the model
was published recently, and its calibration reported in two
separate datasets [83]. The so-called competing risks model
appears to have exceptional performance and very high dis-
crimination (> 0.8) when validated in datasets from a stan-
dardised population akin to that used for model
development. While this is laudable, caution is needed. The
model showed evidence of some problems with calibration-
in-the-large and did not examine heterogeneity in calibra-
tion performance across centres. Even if all centres across
the UK use the same standardisation as the SPREE studies
(in terms of timing and methods of predictor measure-
ment), there may still be heterogeneity in the model per-
formance, for example if the baseline risk of pre-eclampsia
varied across centres. Therefore, before widespread uptake
or implementation of this model, detailed exploration of
the performance in a wide range of realistic settings of ap-
plication is needed, including decision curve analyses. We
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were not able to validate this model in IPPIC-UK datasets
due to lack of information on predictors, and other infor-
mation needed to calculate the MoMs.

Relevance to clinical practice
A clinically useful prediction model should be able to ac-
curately identify women who are at risk of pre-eclampsia
in all healthcare settings that the model will be used.
There is no evidence from this IPD meta-analysis that,
for the subset of published models we could evaluate,
any model is applicable for use across all populations
within UK healthcare setting. In particular, the poor ob-
served calibration and the large heterogeneity across dif-
ferent datasets suggest that the subset of models are not
robust enough for widespread use. It is likely that the
predictive performance of the models would be im-
proved by recalibration to particular settings and popu-
lations, for which local data are needed. This may not be
practical in practice.

Recommendations for further research
A major issue is that, based on the subset of models
evaluated, existing prediction models in the pre-
eclampsia field appear to suffer from calibration slopes
< 1 in new data, which is likely to reflect overfitting
when developing the model. This is known to be a gen-
eral problem for the prediction model field in other dis-
ease areas [84]. To reduce the impact of overfitting,
predictor effects might be corrected by shrinking the
predictor effects (i.e. using penalisation techniques dur-
ing model development—a similar concept is regression
to the mean) [85–88] and performing appropriate in-
ternal validation (e.g. using bootstrapping) [89]. Further-
more, to improve the overall calibration across settings,
the baseline risk (through the intercept) may need to be
tailored to the different settings. This can, for instance, be
achieved by comparing the ‘local’ outcome incidence with
the reported incidence from the original development study
or by re-estimating the intercept using new patient data.
Another important option is to extend the existing models
by including new predictors, to both improve the discrimin-
ation performance and reduce heterogeneity in baseline
risk. To address this, further work could include imputation
of systematically missing predictors by borrowing informa-
tion across studies; techniques for across-dataset imput-
ation are only recently being developed [90–94], and
further evidence on their performance is needed before im-
plementation. There is a need to improve homogeneity
across studies, for example in predictor measurement
method, timing of predictor measurement, and outcome
definition. The various risk thresholds that mothers would
consider for making decisions on management need to be
identified to apply the findings of decision curve analysis.

Conclusion
A pre-eclampsia prediction model with good predictive
performance would be beneficial to the UK NHS, but
the evidence here suggests that, of the 24 models we
could validate, their predictive performance is generally
moderate, with miscalibration and heterogeneity across
UK settings represented by the dataset available. Thus,
there is not enough evidence to warrant recommenda-
tion for their routine use in clinical practice. Other
models exist that we could not validate, which should
also be examined in terms of their predictive perform-
ance, net benefit, and any heterogeneity across multiple
UK settings before consideration for use in practice.
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