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1  | BACKGROUND

There has been much interest in the importance of reproductive 
factors for child outcomes. For example, strong concerns have 

been raised especially in developing countries about the health im-
plications of being born to very young mothers or shortly after the 
previous birth,1,2 and the possible effects of high parental age on chil-
dren's well-being have attracted increasing attention in low-fertility 
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Abstract
Background: There is much interest in how the length of the previous birth interval 
affects various child outcomes, and it has become increasingly common to estimate 
such effects from sibling models. This is because one then controls for unobserved 
determinants of the outcome that are shared between the siblings and linked to the 
birth interval length. However, it is a common idea that such effects can only be es-
timated from data on families with three or more children.
Objective: The goal of this paper is to show, through an intuitive argument and a 
simulation experiment, that it is possible to estimate effects of birth interval only 
from families with two children.
Methods: Observations are simulated from two equations for fertility and one equa-
tion for child mortality. The fertility equations include a random term that is assumed 
to be correlated with the random term in the mortality equation. Mortality models 
are then estimated from the simulated observations. This is done 1000 times, and the 
averages of the 1000 sets of estimates are calculated.
Results: The simulation experiment illustrates that it is indeed possible (by using a 
model specification that takes into account that no birth interval is defined for the 
first birth) to estimate birth interval effects in sibling models even when the data 
include only families with two children.
Conclusion: It is good news that families with only two children can contribute to 
the estimation of birth interval effects. This is because, with a broader basis for the 
estimation, the precision is improved and there is less reason for concern about the 
general relevance of the estimates. An important limitation, however, is that it is po-
tentially problematic to control for maternal age in a sibling model estimated only for 
the first and second child.
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settings.3 A key problem when analysing such effects is that several 
factors that are hard to measure affect both the mother's reproduc-
tion and the child outcomes. Many researchers have therefore esti-
mated sibling models (also called sibling fixed effects, within-mother 
or within-family models), and thus controlled for unobserved paren-
tal and environmental characteristics that are constant over time 
and shared by the siblings. However, when this is done in investiga-
tions of how the length of the previous birth interval affects child 
outcomes, it is common to restrict the analysis to families with at 
least three children and leave out the first child.4-10 The motivation 
is apparently that the previous birth interval is not defined for the 
first-born. This restriction of the estimation to families with at least 
three children is typically seen as a potential problem, both because 
it reduces the effective sample size and because one may suspect 
that the (social or biological) effects of the birth interval may not be 
the same for children of birth order three or higher, or for second-
born children with younger siblings, as they are for the second-born 
with no younger siblings.

However, if the standard assumption about constant unobserved 
confounders holds, it is indeed possible to estimate birth interval 
effects with sibling models even when the data include only families 
with two children, as was done in a recent Australian study11—al-
though this study was immediately criticised.12 In short, the idea is 
that unobserved factors that both affect the reproductive process 
and have a constant impact on the child outcome—and that one 
controls for by doing a sibling analysis—not only add something to 
the outcomes for the second- and later-born children. They add the 
same to the outcome for the first-born. One can therefore take this 
source of confounding into account by comparing with the outcome 
for the first child, although one then, of course, has to use variables 
defined also for the first-born.

The possibility of including only the first and second child is ex-
plained in more detail below and illustrated through a simulation ex-
periment. Infant mortality is the outcome in that simulation, because 
the importance of reproductive factors for infant and child mortality 
has attracted particularly much interest. However, when doing such 
a simulation, it is necessary to make the unrealistic assumption that 
fertility is not affected by earlier child deaths. This is because esti-
mates from sibling models may actually be severely biased when a 
reproductive variable is the “exposure,” and the “outcome” is mortal-
ity or something else that may affect subsequent fertility and thus 
the “exposure” for a younger sibling—a methodological problem that 
has only recently been acknowledged in the literature.13 This has, 
of course, no implications for the conclusions that are drawn. The 
same picture would have appeared from the simulations if another 
outcome not affecting the “exposure” for younger siblings in the real 
world had been chosen.

In the simulations, constant unobserved determinants of infant 
mortality are assumed to be linked to the reproductive factors, 
which is a structure that would motivate a sibling analysis. More 
specifically, the simulation model includes equations for first and 
higher-order birth probabilities (which we may consider as generat-
ing the reproductive variables) and an equation for infant mortality. 

The equations include random terms that represent time-invariant 
unobserved characteristics of the mother and her environment, and 
that are allowed to be correlated.

In a final step, models for preterm birth (a more common out-
come in rich countries) are estimated from real data—for women with 
two children and for women with three or more children. However, 
although the issue is important and findings from earlier sibling anal-
yses have been mixed,5-9 the results will be commented on only from 
a methodological perspective.

2  | METHODS

2.1 | An intuitive explanation

Consider a continuous outcome yij for child i in family j given by.

where eij is a normally distributed random term with zero mean and 
C ij is a categorical variable representing a combination of birth order, 
which is 1 or 2, and birth interval length, which is short, medium, or 
long. (Categorical variables, which can be considered as vectors of 
0/1 dummies, and the associated coefficients are symbolised with 
bold types.) A first-born child is in the first category of C ij, a second 
child born after a short interval is in the second category, a second 

(1)y�� =�0+�C�� +e��

Synopsis

Study question

Is it possible to estimate effects of previous birth interval 
length on child outcomes in sibling models when there are 
only two siblings?

What's already known

It has become increasingly common to use sibling models 
when analysing effects of birth interval length and other 
reproductive factors on child outcomes, because one then 
controls for unobserved constant family characteristics. 
However, it is a common idea that only families with three 
or more children can contribute when estimating such 
effects.

What this study adds

It is explained, and illustrated through simulation experi-
ments, that it is possible to estimate birth interval effects 
in sibling models even when the data include only fami-
lies with two children, although control for maternal age in 
such models is potentially problematic.
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child born after a medium interval is in the third category, and a sec-
ond child born after a long interval is in the fourth category. If the 
first category is chosen as the reference category, the four coeffi-
cients (or “effects”) that constitute λ are 0, λ1, λ2, and λ3. In other 
words, if we set the error term to its average value of 0 (this condi-
tion is ignored below for simplicity), the outcome for the first child is 
λ0 and that for the second child is λ0 + λ1, λ0 + λ2, or λ0 + λ3, depending 
on whether the interval is short, medium, or long. The difference in 
the outcome between a second child born after a short interval and 
a second child born after a medium interval, which is λ1 − λ2, can be 
referred to as the effect of being born after a short rather than a 
medium interval, given birth order (in this case two). Similarly, λ3 − λ2 
is the effect of a long versus medium interval.

This situation—with the outcomes for the four types of children 
being λ0, λ0 + λ1, λ0 + λ2, and λ0 + λ3—can also be described by the 
model 

Sij is a dummy that is 1 if the child is second-born and 0 if the 
child is first-born. D′ ij is a birth interval variable with the three cate-
gories short, medium, and long, where medium arbitrarily is chosen 
as the reference category, and a first-born child is put in the refer-
ence category. μ0 = λ0, μ1 = λ2, and μ2 (which is a vector) is λ1 − λ2 for 
the short-interval category, 0 for the medium-interval category and 
λ3 − λ2 for the long-interval category. The model can, of course, be 
generalised to families with more than two children. One can then 
define Sij as having the two categories 1 and 2 or more, but it would 
be even more reasonable to use a birth order variable with more 
than two categories (such as O ij in the simulation below), because 
long intervals tend to be more frequent at higher birth orders, and 
one will typically want to control for that.

Model (2) can alternatively be written on interaction form as

where Dij needs not be defined for the first-born (for whom Sij = 0) 
because the term then cancels out (which is the reason for writing 
D ij instead of D′ ij as above). The outcomes for the four types of chil-
dren will be as above if ζ0 = μ0 = λ0, ζ1 = μ1 = λ2, and ζ2, which is a 
vector, is λ1 − λ2 for the short-interval category, 0 for the medium-
interval (reference) category and λ3 − λ2 for the long-interval cat-
egory. This was essentially the parameterisation that was used in the 
Australian study.11

Let us now, for simplicity, make the additional assumption that 
there is “something unobserved” with all mothers who have a short 
birth interval that also increases the outcome by δ for all their chil-
dren including the first. Thus, if we again set the error term to 0, the 
outcome for these mothers’ first child is λ0 + δ and the outcome for 
their second child is λ0 + λ1 + δ. In contrast, let us assume that there 
is no such additional contribution for mothers who have a medium 
interval between the births, so the outcomes for their two children 
are λ0 and λ0 + λ2. The motive for doing sibling analysis is to handle 

this kind of situation, where the difference between the outcome for 
a second child born after a short interval and that for a second child 
born after a medium interval—which would be the effect estimated 
from a model such as (2) without sibling fixed effects—is λ0 + λ1 + δ 
− (λ0 + λ2) = λ1 + δ − λ2, while the true effect still is λ1 − λ2. When a 
sibling fixed effects version of (2) is estimated, one may say that a 
correct estimate of μ1 = λ2 “comes from” comparing among mothers 
who have a medium birth interval; it is the difference in the outcome 
between their first and second child. The effect of being born after 
a short rather than medium interval (ie the first element of μ2) is 
correctly estimated by taking the difference between λ1, which is 
the difference in the outcome between the first and second child 
among women with a short interval, and λ2. A similar argument can 
be made for the estimation of the effect of having long rather than 
medium interval.

Hutcheon and Harper12 made two points in their criticism of the 
Australian study. First (when their argument is transformed to fit 
with the example above), they stated that the difference between 
λ1 and λ2 is not the effect of having short versus medium interval, 
but the difference in the effect of birth order (two vs one) between 
those with short and those with medium interval. However, both 
interpretations are reasonable. As mentioned above, the difference 
λ1 − λ2 in the outcome between second-born children with short 
and medium interval—in a “world” as described by the models (1), 
(2), or (3)—is precisely what one usually means by an effect of short 
vs medium interval, given birth order (in this case two). In a “world” 
where there is a contribution δ from an unobserved confounder such 
as described above, it would still be reasonable to consider λ1 − λ2 
as the (true) birth interval effect, and it is this effect that appears 
when a sibling fixed effect version of models such as (2) and (3) are 
estimated.

Their second main point was that the birth interval effect that is 
estimated with a sibling model is not the true effect (ie the constant 
unobserved confounders are not taken adequately into account), 
because the estimate is based on comparisons across mothers. 
However, sibling model estimation means that both λ1 and λ2 are 
correctly estimated from within-mother comparisons (although 
from different mothers), and the difference between the estimates is 
therefore also an unbiased within-mother estimate of λ1 − λ2, which 
is the effect of short versus medium birth interval.

To be convinced that a sibling analysis indeed will work when 
there are only two siblings, one may set up a population with very 
simple features such as just mentioned, or alternatively carry out a 
simulation that reflects a more realistic process. Such a simulation, 
which involves infant mortality as the outcome, is presented below.

2.2 | Simulation

The “data generating model” included the Equations 4-6 below. More 
specifically, each simulation started with 100 000 women just turned 
17 years old. For each woman (j), fertility and mortality random terms—
assumed to affect her fertility throughout her reproductive period and 

(2)y�� = �0+ �1S�� +�2D
�
��
+ e��

(3)y�� = �0+�1S�� +�2S��D�� +e��
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all her children's infant mortality—were drawn from a bivariate normal 
distribution with zero mean. Both variances were set to 1 and the cor-
relation to 0.75, but the choice of variances and correlation is not im-
portant for the conclusion. In other words, there is a fertility random 
term reflecting constant unobserved determinants of fertility and a 
mortality random term reflecting constant unobserved determinants 
of mortality, and the two are correlated to reflect that some of these 
constant unobserved determinants affect both fertility and mortality. 
At each month (t) until the woman turned 45, probabilities of first (f1tj) 
and higher-order (f2tj) births were predicted from the logistic equations 

 

where A tj, D tj and P tj are categorical variables representing age, time 
since last birth, and parity, respectively, and σj is the fertility random 
term. The coefficients (ie the αs and βs) were taken from an earlier 
study13 and reflect patterns actually observed in Norway, but sub-
jected to visual smoothing. The variables A tj, D tj, and P tj were updated 
monthly as the simulation “proceeded.”

For each month, a number was drawn from a uniform distribution 
over [0,1], and if this number was smaller than the relevant predicted 
birth probability, a birth (up to a fifth, as few have more children in 
Norway) was assigned to the woman that month. In that case, the 
probability that this child died within 12 months was predicted from 
the relevant demographic variables multiplied by coefficients taken 
from the mentioned earlier study13 (except that a larger intercept 
was used to get a larger number of deaths), and with a mortality ran-
dom term added—in parallel with the predictions of fertility. In math-
ematical terms, the prediction equation for the death probability mij 
for child i of mother j was:

where Dij’ is time between current and previous birth (primed be-
cause the reference category includes the first-born child), Oij is 
birth order (ie the mother's parity (P) the month after the child was 
born), and τj is the mortality random term. Again, a number was 
drawn from a uniform distribution over [0,1], and if this was smaller 
than the predicted death probability, a death was assigned to the 
child.

Note that this mortality equation is just as (2) in the discussion 
above, except that birth order has more categories than 1 and 2 and 
a random term has been added.

2.3 | Estimation of mortality models from the 
simulated population

Logistic mortality models were estimated from the simulated popu-
lation. The equation was as above, except that the random term was 
substituted by sibling fixed effects (νj):

The estimation was done with Proc Logistic in SAS, using the 
Strata command for conditional likelihood maximisation. For com-
parison, also some models without the sibling fixed effects (referred 
to below as “naïve models”) were estimated.

Simulation followed by estimation was done 1000 times, after 
which the averages over the 1000 sets of estimates were calculated. 
These averages are shown in the tables along with the mortality ef-
fect coefficients used in the simulation and the mean absolute bias.

2.4 | Estimation from real data

Models such as (7) were estimated for preterm births, using data 
on live births between 1967 and 2015 from the Norwegian Medical 
Birth Register. Two groups of women were included: (a) those who 
had their first and second child (but no higher-order births) with the 
same father during the 1967-2015 period, and (b) those who had 
three or more children with the same father within this period, al-
though the first child was not included in the analysis. A focus on in-
terpregnancy rather than interbirth interval was possible with these 
data. The use of data for this purpose has been approved by the 
Regional Committees for Medical and Health Research Ethics and 
the data owners.

3  | RESULTS

3.1 | Results from the simulation experiment

If only mothers with three or more children were included in the 
analysis, the sibling model gave estimates close to the true effects 
(Table 1, column 1)—regardless of whether the first-born was in-
cluded (column 3), as some people might assume should be avoided, 
or left out (column 2). The estimates were also correct if only moth-
ers with two children were included (column 4).

Additionally, sibling models were estimated from a larger sam-
ple by including both mothers with two children—who we have now 
seen can contribute in the estimation—and those with three or more. 
As one would expect, these estimates (column 5) were also very 
close to the true effects, as were those obtained when only the first 
two children in all these families were included (column 6).

The corresponding naïve models (ie without sibling fixed effects) 
were severely biased (Table 2).

The shape of the associations between birth interval and the 
various outcomes that have been analysed in earlier studies will 
typically be captured best by a categorical specification. However, 
in a supplementary simulation experiment, the birth interval was 
arbitrarily set to 32 months for the first-born, and the term −0.02 
(interval-32) + 0.0001 (interval-32)2 was included in the simulation 
equation instead of γ1D′. This second-degree polynomial mimics 
the shape of the birth interval effect in γ1 quite well. The estimated 

(4)log
(

f1tj∕
(

1− f1tj
))
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(5)log
(

f2tj∕
(

1− f2tj
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coefficients were very close to the true ones even when only moth-
ers with two children were included (−0.0199 and 0.000100; not 
shown in tables).

In a final step, it was experimented with effect modification: 
the effect of birth interval assumed so far to be general was now 
restricted to the second-born children, while a more sharply neg-
ative effect was assumed for third- and later-born. When a corre-
sponding interaction between birth order and birth interval was 
added to a model estimated from mothers with three or more 
children, this interaction and the main effect were, as expected, 
almost exactly as assumed in the simulation (not shown in tables)—
regardless of whether the first-born child was included. When a 
model was estimated only for those with two children, the main 
effect was correctly estimated, while it was not relevant to include 
an interaction.

3.2 | Results from analysis of real data

For both groups of women, the naïve model suggested a relatively 
high risk of preterm birth for children born after a very short inter-
val, plus a rising risk as the interval increases beyond three years 
(Table 3). When a sibling model was estimated instead, the excess 
short-interval risk was strongly reduced for both groups. Also, the 

higher risk at longer intervals was less pronounced, most clearly 
among two-child mothers.

4  | COMMENT

4.1 | Principal findings

It was argued theoretically that effects of birth interval can be cor-
rectly estimated from information on only the first and second child 
when the unobserved factors linked to reproduction affect the out-
comes for first- and later-born children similarly. The simulation ex-
periment (with birth order and birth interval as the only observed 
determinants) supports that idea, and in an example based on real 
data the implications of adding sibling fixed effects did not differ 
very much depending on whether the analysis included two-child 
mothers or women with more children.

4.2 | Strengths and limitations

It is valuable to see the theoretical arguments so clearly backed up 
by large-scale simulation experiments based on realistic effect coef-
ficients and that estimation from high-quality register data points 

TA B L E  3   Effects (odds ratios with 95% confidence interval) of birth interval and birth order on the chance of preterm birth, according to 
data from the Norwegian Medical Birth Register, 1967-2015

Variables

Estimates from sibling models Estimates from naïve models

Mothers with three or more children, 
but first child excluded

Mothers with two 
children

Mothers with three or more children, 
but first child excluded

Mothers with 
two children

Interpregnancy interval (mo)

1-9 1.14 (1.06, 1.23) 1.08 (1.00, 1.18) 1.48 (1.41, 1.56) 1.43 (1.35, 1.52)

10-18 1.03 (0.96, 1.10) 1.03 (0.96, 1.10) 1.05 (1.00, 1.10) 1.04 (0.99, 1.09)

19-27a  1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

28-36 0.95 (0.88, 1.03) 0.98 (0.92, 1.05) 1.02 (0.97, 1.08) 1.08 (1.03, 1.13)

37-48 1.08 (1.00, 1.16) 1.10 (1.03, 1.18) 1.12 (1.06, 1.18) 1.20 (1.51, 1.26)

49-60 1.14 (1.05, 1.25) 1.21 (1.11, 1.32) 1.23 (1.16, 1.31) 1.38 (1.30, 1.47)

61-72 1.41 (1.26, 1.58) 1.38 (1.24, 1.53) 1.35 (1.26, 1.45) 1.56 (1.46, 1.68)

73-84 1.51 (1.32, 1.71) 1.49 (1.30, 1.70) 1.45 (1.34, 1.58) 1.68 (1.54, 1.83)

85-96 1.80 (1.54, 2.10) 1.77 (1.50, 2.09) 1.71 (1.55, 1.88) 2.01 (1.80, 2.23)

97-108 1.80 (1.51, 2.16) 1.79 (1.45, 2.20) 1.83 (1.64, 2.05) 2.19 (1.92, 2.50)

109-120 1.54 (1.23, 1.93) 1.99 (1.54, 2.55) 1.75 (1.52, 2.02) 2.47 (2.11, 2.89)

121- 2.02 (1.70, 2.40) 2.51 (2.06, 3.07) 2.26 (2.03, 2.51) 2.73 (2.42, 3.08)

Birth order

1 1.00 (Reference) 1.00 (Reference)

2 1.00 (Reference) 0.62 (0.60, 0.65) 1.00 (Reference) 0.61 (0.59, 0.64)

3 1.01 (0.97, 1.04) 1.01 (0.98, 1.04)

4 1.23 (1.14, 1.31) 1.27 (1.20, 1.34)

5 1.44 (1.24, 1.67) 1.43 (1.27, 1.61)

 aThe reference category for interpregnancy interval includes first-born children.  
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in the same direction. However, it has not been illustrated through 
simulations how biased the estimates might be in various situations 
where the unobserved confounders are not constant (ie shared by 
all siblings). More importantly, maternal age has been left out of the 
simulation and estimation even though it is often taken into account 
in studies of birth interval effects. The reason is that there is a lin-
ear dependence between variables when maternal age is added to 
sibling models estimated for only the first and second child (but not 
when the model is estimated for larger families): Mother's age minus 
the birth interval variable multiplied with a dummy for second birth 
is the mother's age when the first child was born, which is the same 
for both siblings and can be seen as part of the sibling fixed effect. 
This means that effects of maternal age and birth interval may be 
hard to separate. The bias may in some cases be large and in other 
cases of no practical importance, depending on how the effects are 
in reality and the specifications of the model that is estimated. This 
is a complicated issue that needs exploration in future studies. See 
details in the Appendix S1. (Note also that a similar linear depend-
ence problem makes it problematic to separate effects of maternal 
age and birth year in sibling models, and not only when the analysis 
is restricted to the first two children14).

4.3 | Interpretations

It is a common idea that only families with three or more children can 
be included (and the first child left out) when birth interval effects are 
estimated from sibling models.5-10 However, by using model specifica-
tions that take into account that a birth interval is not defined for the 
first-born, it is indeed possible to estimate interval effects for the sec-
ond child from families with only two children. This is good news be-
cause even in Norway, where fertility is higher than in most other rich 
countries, only 29% of the women who are now 45 years old have had 
three or more children, and only 49% of the children born to mothers 
in this birth cohort would be included in an analysis restricted to moth-
ers with more than two children (and 30% of these children would 
be first-born).15 Adding the large group of women with two children 
would make the estimates more precise. Furthermore, it would no 
longer be relevant to claim that the estimates reflect only the situation 
in families with at least three children; they reflect the combination of 
that situation and that in families with only two children.

However, if an analysis is based only on the first and second 
child, one can, of course, only learn about the effect of the interval 
preceding the second birth. It is possible that interval effects vary 
with birth order, and to explore such effect modification one has to 
include also later-born children and add interaction terms.

One should also keep in mind that sibling analysis rests on an as-
sumption about unobserved factors having the same effects on all 
siblings. If there, in reality, are time-varying factors of importance for 
the birth interval length that also affect the child outcome, and these 
are not controlled for, the sibling model estimates will no longer be 
unbiased. A sibling analysis of the first and second child necessarily 
includes a main effect of birth order. If there is no substantive interest 

in the birth order effect, it is not necessary to control for time-vary-
ing factors that affect the chance of having another child, and not 
the birth interval, but one can hardly ever be sure about the latter. 
Thus, it would be a good strategy to control for all time-varying fer-
tility determinants to the extent that it is possible. It should be noted, 
however, that the same applies to analysis that does not include the 
first child. Birth order is likely to be (positively) correlated with birth 
interval length, so unless it can be assumed to have no impact on the 
outcome, one should control for it. Also, there are the same argu-
ments for controlling for time-varying fertility determinants.

It would make good sense and is indeed also very common, to 
control for maternal age when estimating birth interval effects. Such 
control would be particularly important if the interest lies in the ef-
fects of very long intervals, since women who had their previous 
birth several years earlier obviously cannot be very young. Very 
short intervals are less clearly linked to maternal age, although they 
may be more common at a low age, even when comparison is made 
within mothers. However, one should not control for maternal age 
in a sibling analysis of birth interval effects that is restricted to the 
first and second child—unless it is shown in future studies that the 
bias because of the linear dependence between maternal age, the 
birth interval variable, and the sibling fixed effect is small in the rel-
evant situation. Stated differently, if only data about the first and 
second child are available, the choice (according to current knowl-
edge) is between a sibling model without control for maternal age or 
a “naïve” model—with its obvious disadavantages—where such con-
trol is included. The former may well be seen as the best alternative. 
If mothers who have more children, for whom there is no such linear 
dependency problem, are included in a sibling analysis along with 
two-child mothers it may be quite acceptable to control for maternal 
age, but this remains to be checked properly.

5  | CONCLUSION

Researchers analysing the impact of birth interval length on child 
outcomes often compare second- and later-born children, but if the 
standard assumption about constant unobserved confounders holds, 
one can also analyse two-child families. It would be valuable to check 
in future empirical studies whether estimates based on the first and 
second child indeed tend to be quite similar to those obtained from 
larger families. Also, it is important to identify through simulations 
whether there are situations where it is acceptable to control for ma-
ternal age when estimating models for two-child families.
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