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RESEARCH ARTICLE

Dose rate dependent reduction in chromatin accessibility at transcriptional start 
sites long time after exposure to gamma radiation
Hildegunn Dahl a,b, Jarle Ballangbya,b, Torstein Tengsa,b,c, Marcin W. Wojewodzic a,b,d, Dag M. Eidea,b, 
Dag Anders Bredeb,e, Anne Graupnera,b, Nur Dualea,b, and Ann-Karin Olsena,b

aDivision of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway; 
bCentre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway; cDivision for Aquaculture, 
Department of breeding and genetics, Nofima, Ås, Norway; dDepartment of Research, Section Molecular Epidemiology and Infections, Cancer 
Registry of Norway, Oslo, Norway; eFaculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of 
Life Sciences (NMBU), Ås, Norway

ABSTRACT
Ionizing radiation (IR) impact cellular and molecular processes that require chromatin remodelling 
relevant for cellular integrity. However, the cellular implications of ionizing radiation (IR) delivered 
per time unit (dose rate) are still debated. This study investigates whether the dose rate is relevant 
for inflicting changes to the epigenome, represented by chromatin accessibility, or whether it is 
the total dose that is decisive. CBA/CaOlaHsd mice were whole-body exposed to either chronic 
low dose rate (2.5 mGy/h for 54 d) or the higher dose rates (10 mGy/h for 14 d and 100 mGy/h for 
30 h) of gamma radiation (60Co, total dose: 3 Gy). Chromatin accessibility was analysed in liver 
tissue samples using Assay for Transposase-Accessible Chromatin with high-throughput sequen-
cing (ATAC-Seq), both one day after and over three months post-radiation (>100 d). The results 
show that the dose rate contributes to radiation-induced epigenomic changes in the liver at both 
sampling timepoints. Interestingly, chronic low dose rate exposure to a high total dose (3 Gy) did 
not inflict long-term changes to the epigenome. In contrast to the acute high dose rate given to 
the same total dose, reduced accessibility at transcriptional start sites (TSS) was identified in genes 
relevant for the DNA damage response and transcriptional activity. Our findings link dose rate to 
essential biological mechanisms that could be relevant for understanding long-term changes after 
ionizing radiation exposure. However, future studies are needed to comprehend the biological 
consequence of these findings.
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Introduction

Ionizing radiation (IR) is an environmental carcino-
gen [1], with natural (radon, cosmic, soil and food) 
and human-made (medical, nuclear industry and 
power plant accidents) exposure sources. Exposure 
to IR occurs through different radiation regimes (low 
or high doses and dose rates; acutely, chronically, or 
protracted). Solid cancers [2] and leukaemia [3] are 
well-known radiation-induced human health effects 
[4]. However, health effects also extend to other 
possible conditions, including cardiovascular [5–7], 
metabolic [8,9] and ocular diseases [10]. The predic-
tions of health effects from exposure to IR are based 
on populations mainly exposed to high doses and 
high dose rates (e.g., A-bomb survivors from 
Hiroshima and Nagasaki (the Life Span Study) 

[11]). Whether the risk coefficients drawn from 
these studies are relevant when predicting health 
risks from nuclear incidents where lower doses and 
dose rates of IR are more typical, like the Chernobyl 
[12] and the Fukushima Daiichi nuclear powerplant 
accidents [13], is still debated [14–16].

Ionizing radiation introduces a range of cel-
lular effects, from direct DNA damage and the 
induction of reactive oxygen species (ROS) 
[17,18]. These IR-induced insults further acti-
vate events to restore cellular and genetic integ-
rity, like the recognition of DNA damage, cell 
cycle arrest, damage repair, and cellular death 
[19–21]. Events dependent upon the dynamic 
regulation of the chromatin structure [22–25]. 
Epigenetic changes are also reported after 
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radiation exposure [26–28], like DNA methyla-
tion of cytosines [29] and post-translational 
modification of histones [30–32]. These epige-
netic mechanisms can adopt chromatin accessi-
bility without changing the DNA sequence. The 
chromatin can thus be viewed as the functional 
form of genetic information referred to as the 
epigenome. Gene expression and transcriptional 
activity are, therefore, intimately linked to the 
chromatin structure and the remodelling 
dynamics [33]. Over the years, studies have 
addressed altered gene expression as 
a mechanistic explanation for radiation-induced 
outcomes [34–37]. However, how these 
responses progress to disease and how the dose 
rate is relevant to the outcome is debated 
[38–42].

There is a growing understanding of the 
epigenome’s relevance for cancer initiation 
and progression [43]. Therefore, considering 
the extent of IR-induced responses affecting 
the epigenome, mapping the radiation-induced 
changes in chromatin accessibility (how it rear-
ranges upon exposure and how this could be 
linked to changes in gene expression) could be 
essential for establishing causality between 
radiation-induced effects and the progression 
of adverse health effects. The Assay for 
Transposase-Accessible Chromatin using DNA 
sequencing (ATAC-Seq) is an epigenomic 
method for mapping open chromatin regions 
(OCRs) using a probing transposase (Tn5) 
[44,45]. The Tn5 cleaves the DNA at open 
chromatin regions and simultaneously inserts 
adapters for high-throughput DNA sequencing 
(HTS). The Omni-ATAC-Seq [46] reduces the 
contamination from mitochondrial DNA and is 
optimized for frozen tissues making it suitable 
for extensive animal experiments.

In this study, we investigated two hypotheses 
related to the epigenomic effects of ionizing 
radiation. We hypothesize that exposure to 
gamma radiation inflicts significant changes in 
the epigenomic feature of chromatin accessibil-
ity. Furthermore, we hypothesize that radiation- 
induced changes in chromatin structure persist 
over time, depending on the dose rate. The 
hypotheses were addressed by characterizing 

whole-genome chromatin accessibility in liver 
tissue of mice exposed to acute high, intermedi-
ate, or chronic low dose rate gamma radiation, 
all to a total dose of 3 Gy.

Materials and methods

Animals and housing

This study follows the previous descriptions of the 
animal experiment [36,47]. Specific Pathogen Free 
CBA/CaOlaHsd (3–8 weeks) mice were purchased 
from Envigo (Horst, The Netherlands). 
Acclimation took place for a minimum of 4 d. 
The mice were then randomly housed in groups 
of two to three in individually ventilated disposa-
ble PET plastic cages (IVC racks) (Innovive, San 
Diego, USA) using Aspen tree bedding (Nestpack, 
Datesand Ltd., Manchester, UK). Temperature and 
light conditions were controlled (21 ± 2°C, 45 ±  
15% relative humidity, 50 air changes h−1 and 
photoperiod 12:12 (L:D). Mice had ad libitum 
access to tap water in PET bottles and SDS RM1 
feed (Special Diet Services, Essex, UK). Due to 
space limitations in the radiation field, the mid- 
dose rate (MDR) groups were housed outside the 
IVC rack during irradiation, but in the same dis-
posable PET cages but using transport lids. At 
termination, the mice were administered anaesthe-
sia using ZRF-cocktail (Zolazepam, Tiletamine, 
Xylazine, and Fentanyl) followed by heart punc-
ture before cervical dislocation and collection of 
tissues. The tissues were snap-frozen in liquid 
nitrogen and stored at −80°C. We adhered to the 
national legislation for animal experimentation, 
and the experimental protocol was approved by 
the Norwegian Food Safety Authority (NFSA, 
approval no. 8803). No mice died or showed clin-
ical signs due to the exposure.

Radiation and dosimetry

As previously described [47], all groups received 
gamma radiation (60Co-source) exposure using 
different dose rates (DR); 2.5 (low DR (LDR)), 
10.0 (mid DR (MDR)) and 100.0 (high DR 
(HDR)) mGy/h (Table 1, Figure 1). The pre- 
calculated duration of exposure was 1200 h, 300 h 

2 H. DAHL ET AL.



and 30 h for the respective groups. Dosimetry was 
performed using nanoDots as described [48,49]. 
The numeric value of air kerma to whole-body 
absorbed dose conversion coefficient for chronic 
exposures was 0.932 ± 0.008, resulting in a total 
whole-body absorbed dose of 2.60 ± 0.19 Gy for 
the 2.5 mGy/h-group, 2.67 ± 0.16 Gy for the 10 
mGy/h-group, and 2.65 ± 0.13 Gy for the 100 
mGy/h-group, all denoted as 3 Gy throughout the 
article. The irradiation took place at the FIGARO 
low dose gamma irradiation facility, managed by 
the CoE Centre of Environmental Radioactivity 
(CERAD CoE, Norwegian University of Life 
Sciences, Ås, Norway) [48,50,51]. For animal 
care, the irradiation was interrupted daily (30– 
120 min). Thus, the beam-on time was adjusted 
according to animal care off-time to achieve the 

pre-calculated total dose of 3 Gy. Cage positions 
were rotated daily to assure uniform exposure. 
Unexposed control mice were housed behind 
lead shielding outside the radiation field but inside 
the exposure room. Further details regarding dosi-
metry and the current experimental design have 
been described [36,47].

Experimental design

The mice (n = 35) were divided into four experi-
mental exposure groups (controls (CTRL), LDR, 
MDR and HDR) (Figure 1, Table 1). The CTRL, 
LDR, and HDR were further divided into two 
post-radiation termination groups. A total of 
seven experimental groups were thus generated; 
four groups were terminated 19–26 hours after 

Table 1. Experimental descriptive details: groups, post-radiation time in days, dose rate, age at termination in days, and number of 
samples per group used in ATAC-Seq.

Groups

Days 
post-radiation 

mean ± SD

Nominal 
dose rate 
(mGy/h)

Whole-body 
absorbed dose 

(Gy)

Age at 
termination (days) 

mean ± SD 
(range)

n samples 
ATAC-Seq

Early response CTRL - - - 70 ± 0 5
LDR 1 ± 0 2.5 2.60 ± 0.19 112 ± 0 3
MDR 1 ± 0 10 2.67 ± 0.16 70 ± 0 3
HDR 1 ± 0 100 2.65 ± 0.13 63 ± 0 3

Late response CTRL_late - - - 185 ± 70 
(118–245)

4

LDR_late 108 ± 0 2.5 2.60 ± 0.19 216 ± 0 3
HDR_late 149 ± 35 100 2.65 ± 0.13 248 ± 34 

(216–284)
3

Figure 1. Experimental design ATAC-Sequencing was utilised to investigate radiation-induced effects on liver chromatin accessibility 
at two post-radiation timepoints: early (19–26 hours) and late (108–178 d). Gamma radiation was administered using three dose 
rates (low (LDR), mid (MDR) and high HDR)) to a total dose of 3 Gy. Liver samples were collected for ATAC-Seq (current study) and 
transcriptional response both early and late (RNA-Seq) [36]. .
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the end of irradiation (Early response groups: 
CTRL, LDR, MDR and HDR, and three groups 
were terminated after a post-radiation period of 
108–178 d (late response groups, CTRL_late, 
LDR_late, and HDR_late. CTRL and CTRL_late 
represent the corresponding control groups for 
the two termination timepoints, early and late, 
respectively. The mice were transported to the 
Norwegian Institute of Public Health (NIPH, 
Oslo, Norway) for post-radiation housing until 
termination.

Assay for transposase-accessible chromatin 
(ATAC-Seq)

Samples (N = 24) were processed using an ATAC- 
Seq protocol for frozen tissues (Omni-ATAC) 
[46]. Approximately 20 mg of liver tissue was col-
lected from snap-frozen samples stored at −80°C 
and homogenized in 1 mL OptiPrep solution D in 
a 7 mL Kimble Dounce tissue grinder set (DWK 
Life Sciences, Mainz, Germany) as described [46]. 
All steps were performed on ice unless specified 
otherwise. The tissue was homogenized using six 
strokes with pestle A and six with pestle B. The 
homogenate (400 µL) was diluted 1:1 in OptiPrep 
solution C (5:1 of OptiPrep solution A and 
OptiPrep solution B (Sigma-Aldrich® Brand (cat. 
nr: D1556), Merck KGaA, Darmstadt, Germany)) 
to a final concentration of 25% iodixanol. 
A gradient consisting of two layers of iodixanol, 
29% (w/v) and 35% (w/v), was used to separate the 
nuclei (3000 × g, 4°C, 20 minutes). The band of 
nuclei was extracted (200 µl) and diluted in 800  
µL ATAC-RSB, and pelleted at 500 × g for 10 min 
at 4°C. The nuclei pellet was suspended in ATAC 
TD-buffer (22 mM Tris – HCl pH 7.4, 10 mM 
MgCl2, 20% Dimethylformamide; pH 7.4) to 
a final concentration of 50 K − 100 K nuclei/50  
µL. The nuclei solutions (50 µL) were incubated at 
37°C for 30 min with 2.5 μL Illumina Tagment 
DNA Enzyme Illumina, San Diego, CA, USA 
(cat. nr: 20034197) for tagmentation. The frag-
mented DNA was purified using PCR 
Purification Kit (QIAGEN, Hilden, Germany) 
and eluted in 20 µL elution buffer. Amplification 
of the tagmented DNA (20 µL) was performed 
using 25 µL 2× NEBnext High-Fidelity PCR 
Master Mix (New England BioLabs (cat. nr: 

M0541L), Ipswich, MA, USA) and 2.5 µL forward 
and reverse Nextera DNA CD indexes (Illumina, 
San Diego, CA, USA). The cycling conditions 
were: (1) 72°C for 5 min, (2) 98°C for 30 sec, (3) 
98°C for 10 sec, (4) 63°C for 30 sec, and (5) 72°C 
for 30 sec. Steps 3–5 were repeated five times. 
Based on a tape station trace (4200 TapeStation, 
Agilent, Santa Clara, USA), the libraries were 
further amplified with 5–7 cycles (to a total of 
10–13 cycles). The libraries were purified and size- 
selected using AMPure XP beads (Beckman 
Coulter, Brea, CA, USA) to eliminate fragments 
<100 nt and >1500 nt and diluted to 5 nM. Paired- 
end sequencing (PE150) with an average depth of 
50 million raw reads was sequenced on Illumina 
NovaSeq6000 at Novogene Co., Ltd 
(Cambridge, UK)).

Pre-processing of sequencing reads and 
downstream analysis

Sequencing
The exact parameters of pipelines used for raw-data 
and differential analysis are presented in 
Supplementary_1 (S1). The FASTQC files were qual-
ity controlled using the FASTQC tool (bioinformatics. 
babraham.ac.uk/projects/fastqc/). Adapter trimming 
was performed using Trim Galore! (bioinformatics. 
babraham.ac.uk/projects/trim_galore/). The reads 
were aligned to the mouse genome (GRCm38) with 
BWA [52] using the nf-core ATAC-seq pipeline [53]. 
Further, the reads from accessible regions (<100 nt) 
were extracted from the Binary Alignment Map 
(BAM) files and peak called using MACS2 (v2.2.7) 
[54]. The quality of peaks were controlled using the 
ChIPQC (v1.26.0) [55], and non-overlapping consen-
sus peaks in 8 of the 24 biological samples were used 
for differential analysis. The ATAC-Seq raw reads 
supporting the findings in this study are made openly 
available at the public NCBI Sequence Read Archive 
(SRA) (www.ncbi.nlm.nih.gov/sra), using BioProject 
accession id: PRJNA832920.

Analysis of differentially accessible regions 
(DARs)

All downstream analysis was performed using 
R-statistical environment (R-Core Team (2020)). 
Differentially accessible peaks were called using 

4 H. DAHL ET AL.

http://bioinformatics.babraham.ac.uk/projects/fastqc/
http://bioinformatics.babraham.ac.uk/projects/fastqc/
http://bioinformatics.babraham.ac.uk/projects/trim_galore/
http://bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.ncbi.nlm.nih.gov/sra


DESeq2 (v1.30.1) [56] and adjusted for the age of 
animals, as age could potentially introduce 
changes in chromatin structure [57]. Statistically 
significant differentially accessible regions (DARs) 
were identified using a false discovery rate (FDR) 
<0.1 when comparing exposure groups to the 
respective control group (early: LDR vs CTRL, 
MDR vs CTRL, HDR vs CTRL and late: 
LDR_late vs CTRL_late and HDR_late vs 
CTRL_late). DAR-associated genes (DAGs) were 
annotated using ChIPseeker (v1.26.2) [58] with 
‘org.Mm.eg.db’ (3.8.2) [59]. Entrez gene identifiers 
were used. All the genes in proximity to the DARs 
(regardless of distance and genomic region) were 
identified as a DAR-associated gene (DAG) (‘near-
est approach’).

Enrichment analysis of DAR-associated genes 
(DAGs)

MetaScape (v3.5, used: 23.02.2022), a web-based 
tool, (http://metascape.org) was used for multiple 
gene-lists enrichment analysis [60]. In short, the 
default settings for enrichment were used and 
covered the following ontology sources: KEGG 
Pathway, GO Biological Processes, GO Cellular 
Components, GO Molecular Functions, 
Reactome Gene Sets, CORUM, TRRUST, 
PaGenBase, WikiPathways and PANTHER 
Pathway. P-value <0.01 (accumulative hypergeo-
metric distribution), min. overlap of three genes, 
and an enrichment factor >1.5 were used to iden-
tify statistically significant terms. By defult, the 
whole genome is used as background gene list 
by MetaScape for enrichment analysis. The top 
20 statistically significant terms represent each 
cluster in the cytoscape, surrounded by member-
ship terms with a similarity score >0.3. 
Benjamini-Hochberg procedure is used for 
adjusted p-value (q-value). The complete 
MetaScape-output is found in 
Supplemantary_2 (S2).

Comparing the ATAC-Seq data with RNA-Seq

The association between differentially expressed 
genes (DEGs) from our previously reported RNA- 
Seq data [36] and the DAGs in the current study 
was performed. Hepatic RNA isolation, mRNA 

sequencing and data analysis are described in 
[36]. The list of differentially expressed genes 
(DEGs) were found from in Dahl et al. (2021) 
supplementarytable 1, and cross-analysed with 
the ATAC-Seq data. The RNA sequencing raw 
data is available at the NCBI Sequence Read 
Archive (SRA) (PRJNA747753).

First, the DAGs overlapping a DEGs were visua-
lized using the web-based tool, InteractiVenn [61]. 
Further, the mRNA expression levels (log2FC) 
were categorized as ‘up-regulated’ or ‘down- 
regulated’ based on the expression level threshold 
cut-offs of log2(FoldChange)>±0.3, respectively. 
When the mRNA log2(FoldChange) fell between 
the cut-offs, the mRNA expression was classified 
as ‘stable’ (unaffected by exposure). If the gene 
identified as a DAG had no mRNA data, the 
DAG were classified as ‘not expressed.’ The 
DAGs were grouped based on the chromatin 
accessibility as reduced (negative log2-ratio) or 
gained (positive log2-ratio), and the two categories 
presented in a mosaic plot.

Results

To investigate the influence of dose rate (chronic 
and acute) on chromatin landscape, whole- 
genome ATAC-Sequencing were performed on 
tissue collected from mouse livers. The chromatin 
accessibility was evaluated at two post-radiation 
timepoints: one day post-radiation (early) and 
after a longer post-radiation period (late). We 
will focus on the LDR and HDR exposure groups, 
both early and late.

Quality control of ATAC-Seq

The quality of the libraries was assessed both to 
validate the ATAC-Seq protocol and the results 
according to recommendation [44,46]. The tag-
mentation procedure showed the expected distri-
bution with abundance of sequenced fragments 
less than 100 bases and progressively fewer frag-
ments of larger size (Figure 2a). Principal compo-
nent analysis (PCA) showed no batch effects 
(Figure 2b). After quality filtering and adaptor 
removal, the overall rates of aligned reads to 
mg38 ranged from 93.8% to 98.6% 
(Supplementary_3 (S3)). A total of 65,981 
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consensus peaks were identified when merging the 
peak data sets from controls and experimental 
groups. The identified peaks were associated with 
31,121 ENSMUST transcripts, representing 17,164 
different genes (Ensembl 102) [62]. 

Radiation-induced changes in genome-wide 
chromatin accessibility

To identify changes in the chromatin landscape 
driven by dose rate at the post-radiation time-
points, we contrasted all exposure groups to 
their respective control group. Statistically sig-
nificant (FDR < 0.1) differentially accessible 
regions (DARs) were identified for all contrasts 
except LDR_late vs CTRL_late (Table 2, 

Figure 3). The magnitude of changed chromatin 
accessibility and the statistical significance is 
illustrated in volcano plots (Figure 3). Higher 
numbers of DARs were observed in HDR com-
pared to LDR one day post-radiation (early) 
(Table 2). By stratifying the early response 
DARs in gained accessibility (positive log2- 
ratio) and reduced accessibility (negative log2- 
ratio) more than 60% of the DARs in all three 
groups showed gained accessibility compared to 
control (CTRL). Few DARs were identified for 
MDR, all of them had gained accessibility.

Following the longer post-radiation period 
(late), the chromatin accessibility in chronic 
low dose rate exposed mice (LDR_late) were 
not different from control mice, while the high 

Figure 2. ATAC-Seq quality control by the sequenced fragments length distribution and principal component analysis a) a principal 
component analysis (PCA) plot illustrates the samples sorted represented by experimental group using upper-case letter and color. 
b) Transposase tagmentation sequence fragment lengths distribution. Each line represents the mean counts per fragment per 
experimental group. Fragment lengths up to 100 bp represents the ATAC-Seq fragments corresponding to nucleosome-free regions 
(NFRs) used for peak calling. The characteristic shape of waves along the x-axis (fragments length) represents fragments spanning 
nucleosomes; mono- (186–282 bp), di- (ca 400 bp) and tri- (ca 600 bp) nucleosomes. The fragment distribution per sample in 
Supplementary 4 (S4).

Table 2. Differentially accessible regions (DARs) by dose rate. The DARs (FDR < 0.1) are stratified into regions with gained or 
reduced accessibility contrasted to the respective control group (relative percentage in brackets). The total number of DAR- 
associated genes (DAGs) is listed with the numbers of DAGs also identified by RNA sequencing in Dahl et al. 2021 in brackets 
(*mrna)).

Group Contrasts Total DARs
Reduced 

accessibility
Gained 

accessibility DAGs (*mRNA)

Early response LDR vs CTRL 100 26 (26%) 74 (74%) 96 (67)
MDR vs CTRL 7 0 7 (100%) 7 (6)
HDR vs CTRL 326 121 (36%) 205 (64%) 295 (161)

Late response LDR_late vs CTRL_late 0 0 0 0
HDR_late vs CTRL_late 371 360 (97%) 11 (3%) 364 (331)

6 H. DAHL ET AL.



dose rate exposed mice were markedly different 
from controls (HDR_late). The DARs identified 
for HDR_late vs CTRL_late demonstrated 
almost exclusively reduced accessibility 
(Table 2).

The overlap between exposure groups was eval-
uated to identify a radiation dose-specific chroma-
tin DAR peak signatures. The most prominent 
finding is the large fraction of dose-rate- and time-
point-specific responses, as only few of the DARs 
overlapped between the exposure groups. All the 
early groups share three DARs, LDR_early and 
HDR_early shared nine DARs, HDR_late shared 
four DARs with LDR_early. HDR_late did not 
share any DARs with HDR_early (Figure 4a).

Functional classification of DARs

The genomic elements containing the open chro-
matin regions (OCRs) were identified (Figure 4c, 

Table 3). The results showed that the occupancy 
within genomic elements differed between dose 
rates and post-radiation timepoints. At DPR1, 
DARs were mostly present within promoters 
(≤1kb), distal intergenic and intronic regions. 
However, the DARs occurrence differed between 
chronic LDR and the acute HDR exposure one day 
post-radiation, which demonstrated fewer DARs 
in promoter regions and more in intergenic and 
intronic regions (Supplementary Table). The 
HDR_late DARs were almost exclusively located 
in promoter (≤1kb) regions (92%). Of these 94% 
were found at the transcriptional start site (TSS).

The DAR-associated genes (DAGs)

Only few DARs were localized to the same gene, 
seen by the lowered numbers of DAGs compared 
to DARs in Table 2. As for the DARs, most of the 
DAGs are dose-rate-specific (Figure 4b) and 

Figure 3. Differentially changed accessible regions (DARs) the statistical significance and the magnitude of the differentially changed 
accessible regions (DARs, dark spots) are presented as repressed (upper left quadrant) or gained (upper right quadrant) compared to 
controls, using false discovery rate (FDR) <0.1, illustrated by the horizontal line at -log.
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a slight increase in the number of overlapping 
DAGs between the dose rate groups were seen. 
Even if the gene overlap was marginal, the 
enriched pathways network showed shared biolo-
gical functions between HDR_early and HDR_late 
(Figure 5, Supplementary 2).

In general, the network of enriched pathways 
also supports a specific response for each dose 
rate, both early and late. Few significantly 
enriched pathways were identified for LDR_early 
and for HDR_early DAGs. The numbers of MDR 
DAGs were too few to impact the overall enrich-
ment analysis (Supplementary 2). The highest 
number of enriched terms were found for 

HDR_late, and they were in majority specific to 
this group (Figure 5c). Enriched terms found for 
LDR_early is related to aspects of lipid metabo-
lism (Glycerolipid biosynthesis (adj. p-value 
0.009) and HDL remodelling (adj. p-value 
0.013)). For HDR_early, the trend was the same, 
with few enriched pathways, which functions 
were related to the GO term ‘Small-molecule 
metabolic processes’ (adj. p-value 0.0004).

The most enriched pathway for HDR_late 
included ‘Cellular response to DNA damage sti-
mulus’ (adj. p-value 0.0001), ‘IL-5 signalling path-
way’ (adj. p-value 0.0001) and ‘Transcription 
factor AP-1 complex’ (adj. p-value 0.0031). The 

Figure 4. Overlap of Differential Accessible Regions (DARs) and DAR-associated genes (DAGs), and the allocation of open chromatin 
regions (OCRs) and DARs to genomic elements. Venn diagrams of DARs (a) and DAGs (b) for all experimental groups. The numbers of 
DARs and DAGs for each group in brackets. Total numbers of identified OCRs (a) and the corresponding genes (b) outside Venn 
diagram. c) Allocation of OCRs to genomic elements for both controls (CTRL and CTRL_late) after merging the biological replicates. 
d) Allocation of DARs after contrasting the experimental group to respective controls. MDR and LDR_late are not represented in d) 
due to few or no DARs identified, respectively. The distribution of the DARs within the genomic elements of the exposure groups 
were tested by χ2-test and found statistically significant different (χ2statistics = 472.62, p-value < 0.001).
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cluster ‘Cellular response to DNA damage stimu-
lus’ (red nodes in Figure 5A) also comprises the 
GO term ‘DNA Repair’ and ‘Double-strand break 
repair’.

HDR_late shared only five terms with 
HDR_early, although only slightly significant for 
HDR_early. Examining genes enriched to several 
terms, mutual DAGs are shared between 
‘Transcription factor binding’, ‘Negative regulation 
of cell differentiation’ and ‘Haematopoietic or lym-
phoid organ development’. ‘Circadian rhythm’ and 
‘Regulation of fat cell differentiation’ also shared 
DAGs.

Association between chromatin accessibility and 
transcription profile

Chromatin structure is relevant for gene expres-
sion, and the overlap between the identified DAGs 
and the differentially expressed genes (DEGs) [36] 
was explored (Figure 6). Some overlap between the 
early DAGs and the DEG was seen. Further on, no 
overlap was observed late after exposure. However, 
correlating the DAGs and the RNA-Seq gene tran-
scripts, only very weak correlations were seen 
between these variables (data not shown). 
Therefore, the association between the DARs chro-
matin state (reduced accessibility, gained accessi-
bility, or stable) and the direction of gene 
expression (down-regulated, up-regulated, stable, 
or not expressed) are addressed in Figure 7.

Most of the identified DAGs (regardless of 
chromatin state) had stable RNA transcription 

levels, and no clear association were seen between 
a reduction or increase in the accessibility and the 
expression level of the cognate gene. A higher 
portion of the DAGs identified early, compared 
to late, had no detectable transcripts. Even if the 
DARs for HDR_late showed reduced accessibility, 
most of the cognate genes showed stable gene 
expression levels (297), whereas a small fraction 
of the genes was up-regulated (23), and another 
fraction was down-regulated (11).

Discussion

This study explores how chronic low dose rate 
gamma radiation impacts chromatin accessibility 
and whether changes in chromatin could persist 
long time after exposure to ionizing radiation. We 
demonstrate that modifications to the epigenome, 
represented by chromatin accessibility, were dose 
rate dependent, not only one day post-radiation 
but also after a post-radiation period of more than 
3 months. We found that exposure to chronic low 
dose rate; 1) generated a different chromatin pat-
tern compared to acute high dose rate one day 
post-radiation, and 2) the chromatin state was 
restored and comparable to controls over 3 
months after irradiation. Long-term chromatin 
changes were only observed after acute HDR expo-
sure. These changes were evident by the reduction 
in chromatin accessibility at transcriptional start 
sites (TSS) of genes related to DNA double-strand 
breaks and regulation of transcriptional activity.

We have focused on the LDR and HDR-groups, 
both early and late, since few DARs were identified 

Table 3. Relative portion of open chromatin regions (OCRs) and differential accessible regions (DARs) allocated to genomic elements.

Genomic 
Element

Open Chromatin Regions (OCRs) Differential accessible regions (DARs)

Early Late Early Late

CTRL LDR MDR HDR CTRLlate LDRlate HDRlate

LDR 
vs 

CTRL

MDR 
vs 

CRTL

HDR 
vs 

CTRL

HDRlate 

vs 
CTRLlate

Promoter (<=1kb) 41.3 42.4 43.3 30.9 42.8 49.2 50.8 33.0 28.6 7.7 92.2
Distal Intergenic 23.5 22.5 21.8 26.3 22.1 20.1 19.9 29.0 28.6 39.6 3.2
Other Intron 16.2 15.9 15.5 19.6 15.7 13.8 13.6 18.0 28.6 29.4 0.8
1st Intron 8.8 8.8 9.0 10.7 8.8 7.6 7.3 6.0 12.6 0.3
Promoter (1-2kb) 3.3 3.4 3.6 4.3 3.7 3.3 2.7 3.0 2.5 0.5
Promoter (2-3kb) 2.6 2.6 2.7 3.4 2.7 2.2 1.9 7.0 2.8 1.3
Other Exon 1.9 1.9 1.8 2.0 1.8 1.6 1.6 3.0 14.3 1.8 0.8
1st Exon 1.2 1.3 1.2 1.2 1.2 1.2 1.2 1.8 0.5
3’ UTR 1.0 1.0 1.0 1.3 1.1 0.9 0.8 1.0 1.2 0.3
5’ UTR 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.6
Downstream (<=300) 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Total (%) 100 100 100 100 100 100 100 100 100 100 100
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in the MDR_early group, and no linear dose-rate 
dependent trend was observed. Similar findings for 
the MDR group were also observed in our pre-
vious RNA-Seq data [36]. One possible explana-
tion for the observed MDR group discrepancy 
might be related to the space limitations in the 
radiation exposure field, resulting in housing of 
the MDR mice in cages outside the IVC rack. 
However, non-monotonic dose responses are pre-
viously observed and discussed by others 
[28,63,64], alleging that the reduced response for 
a mid-dose rate could be linked to biological 

aspects rather than experimental issues, and 
should be pursued in future studies.

One day post-radiation, the results support that 
gamma radiation remodels chromatin accessibility. 
This remodelling appeared dose-rate-specific, 
where HDR exposure led to more extensive 
changes than LDR exposure. These results are 
coherent with the transcriptomic profiles that 
also demonstrated gene perturbations to be dose- 
rate-specific [36]. This pattern was seen for DARs, 
DAGs and the DAGs functional enrichment ana-
lysis. Common traits between LDR and HDR were 

Figure 5. Network of top 20 enriched biological terms of the DAGs. the identical clustering network is presented as: (a) biological 
terms by colouring. Node size reflects number of input genes. The list of terms is sorted by p-value. b) p-value (-log10(p-value)), and 
c) coloured according to contrast group, where each pie sector is proportional to the number of hits from the respective input gene 
list. The MDR exposure group is not represented due to few DAGs.

10 H. DAHL ET AL.



seen when the allocation of the DARs to the geno-
mic elements, where the most striking difference 
was found in intergenic and intronic regions 
where the number of DARs allocated to the 
regions increased with dose rate. Except for 
MDR, which showed few chromatin changes. 
Intergenic and intronic regions are assumed to 
possess essential transcriptional regulatory regions 
like enhancer elements [65]. Most of the identified 
DARs gained accessibility (>60%) one day post- 
radiation for both the LDR and HDR exposure, 
indicative of a possible linkage to the increase in 
transcriptional activity [36].

The enrichment analysis of both LDR_early and 
HDR_early DAGs revealed terms related to meta-
bolic processes. Mechanisms previously showed to 
respond to radiation [66,67]. Further, the enrich-
ment analysis revealed few statistically significant 
terms for both LDR_early and HDR_early. Since 
all the DARs were cognate to the nearest proximal 
gene, this could introduce ‘false genes’ and con-
found the enrichment analysis. Implying that the 
DARs harbour distal regulatory properties to other 
genes than the nearest. The high number of iden-
tified DAGs where the mRNA transcript is not 
expressed [36] could also support this (Figure 7).

As the ATAC-sequencing method is based on 
the depletion of nucleosomes, it is presumed that 
the mapped reads should be in regions associated 
with transcriptional activity. However, comparing 

the DARs with the DEGs from the RNA-Seq ana-
lysis [36], some overlap is seen one day post- 
radiation and none later. Studies attempting to 
correlate gene expression data with ATAC-Seq 
data are inconsistent. Some studies show correla-
tion between the chromatin state and gene expres-
sion [68–72], and others report no correlation 
[73,74]. Due to this, and the lack of observed 
correlation between the data sets herein (data not 
shown), we stratified the DARs and associated 
them with mRNA stratified on expression direc-
tion (Figure 7). This exercise demonstrated that 
chromatin regions with reduced accessibility were 
proximal to or within upregulated genes and vice 
versa. This indicates that changes in chromatin 
configuration are not strongly associated with 
mRNA expression in samples collected at the 
same time points (Figure 7), as also observed by 
others [68]. We assume that the transcriptional 
activity observed could represents past events 
compared to the chromatin status. Hence, differ-
entially expressed genes do not necessarily have 
differentially changed accessible regions nearby in 
response to radiation. It should be noted that 
reduced chromatin accessibility also can be linked 
to increased transcriptional activity through bind-
ing of regulatory proteins [75].

The results one day post-radiation supports 
a generally accepted presumption that the biologi-
cal system responds differently to chronic low and 

Figure 6. The association between the DAGs and previously reported differentially expressed genes (DEGs) Overlap between statistically 
significant DAGs (Fdr<0.1) derived from ATAC-Seq and the previously published statistically significantly (Fdr<0.05) differentially 
expressed genes (DEGs) in Table S1 found in Dahl et al (2021) [36]. Total numbers of genes outside Venn diagram.
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acute high dose rates when given the same total 
dose. However, this statement is highly debated 
due to inconsistent cellular, animal, and human 
research results [40,76]. The dose rate related 
response, seen in this study, could be linked to 
several factors like type and repair of DNA damage 
[77], as the DNA damage response introduces 
alterations to the chromatin structure (reviewed 
in [78]). Changes in the chromatin packaging are 
also suggested to be an essential factor for DNA 
damage, as condensed chromatin, due to the 
nucleosome-binding of DNA [79], is assumed to 
be more resistant to radiation damage and the 
attack from ROS [80–82]. Genomic regions 
depleted of nucleosomes, such as promoters, are 
thus more susceptible to DNA damage. This could 
result in restricting the genomic distribution of 

possible DNA damage sites. Therefore, we 
hypothesize that the difference in chromatin acces-
sibility could be due to the difference in the geno-
toxic susceptibility between the chronic LDR and 
acute HDR. However, as the open chromatin 
regions in tissue represent an average accessibility 
profile generated from heterogeneous cell types 
and chromatin states, we anticipate that chromatin 
changes related to DNA damage-sensing and - 
repair cannot be detected in bulk tissue using 
ATAC-Seq alone.

The long-term changes in chromatin accessibility 
demonstrated a clear dose-rate-specific response. 
Interestingly, only a long-term response after HDR 
exposure was identified, while no measurable 
changes were seen after the LDR irradiation. After 
the HDR exposure, a significant differential 

Figure 7. The association between the chromatin accessibility and the gene expression directions for each exposure group a) early (1 day 
after) and b) late (>100 d after). Each DAR corresponds to the nearest gene (DAGs), and the expression of these DAGs have been 
extracted using the RNA-Seq data [36]. The DAGs expression level is categorised as “not expressed” (not detected mRNA), “up-regulated” 
when log2(FoldChange)>0.3, “stable” when −0.3≤log2(FoldChange)≤ 0.3) and “down-regulated” when Log2(FoldChange)<-0.3). The 
mosaic plots represent the percentage of genes in each RNA expression category, and the numbers inside the bar show the number of 
genes in each category. The mosaic plot for LDR_late is missing as no DARs were identified. .
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reduction in accessibility was inflicted, primarily 
confined to transcriptional start sites (TSS). The 
magnitude of the late DARs was in the same order 
as HDR_early, but the regions did not overlap. 
Additionally, only a few DAR-associated genes 
(DAGs) overlapped between the two HDR time 
points. Nevertheless, the enrichment analysis 
revealed common biological pathways at the two 
time points. Suggesting that different regions could 
be connected via biological functions, even if the 
overlap between the DARs and the DAGs were mar-
ginal. Taken together, a shift in chromatin confor-
mation in the period between the sampling 
timepoints is evident, where the chromatin state 
after the low dose rate is restored whilst the high 
dose rate induces long-term changes.

The biological terms enriched for HDR_late are 
related to known radiation-induced effects, such as 
DNA double-strand breaks. Other interesting path-
ways included transcription factor binding relevant 
for RNA polymerase II, the AP-1 complex and the 
transcription repressor complex, terms sharing the 
transcription factors Jun and Fos. These genes are 
well-characterized as immediate-early response 
genes (IEGs) [83], radiation-responsive proto- 
oncogenes [84], and also, they are the two dimers 
constituting the AP-1 complex [85]. As we report 
a reduction in accessibility over TSS in genes 
enriched to these critical processes, we hypothesize 
that these results could be related to molecular pro-
cesses hindering the transposase from accessing the 
DNA [86,87]. Such could include the protein bind-
ing to the DNA (e.g., TFs and polymerase II) [33] or 
changes in epigenetic states. Identifying specific pro-
tein-binding motifs within the DARs genomic 
sequence could enlighten this issue and should be 
pursued in future studies.

Epigenetic mechanisms involving altered chroma-
tin accessibility have been linked to multiple radia-
tion-induced effects (reviewed in [28,88]) like 
histone-methylation (H3K27me3 [89]) resulting in 
gene repression or gene-specific hyper-methylation 
[90]. Such changes could be a result of exposure- 
induced poised or primed genes/promoters. Primed/ 
poised genes are transcriptionally silenced genes in 
the absence of stimulus, but the promoters have both 
repressive and activating properties for rapid activa-
tion upon new stimuli [91]. It is thus interesting to 
note that we observed reduced accessibility of 

enriched terms related to transcriptional activity. 
A genome-wide mapping study of chromatin states 
identified repressed TSSs enriched with active chro-
matin marks and RNA polymerase II. They also 
showed that repressive and activating properties are 
strongly associated with IEGs [92]. A repressed chro-
matin state does not necessarily represent 
a condensed chromatin state that hinders transcrip-
tion but, in contrast, represents a regulatory mark for 
rapid transcriptional activation upon subsequent sti-
muli [93]. Taken together, poised/primed genes could 
be a plausible explanation for our results that could 
represent essential mechanisms in radiation-induced 
adaptive response. However, this notion must be ver-
ified by methods commentary to ATAC-Seq.

Other factors for the observed long-term HDR 
response could be linked to changes in the cellular 
composition of the liver due to cell death, differentia-
tion, or senescence. However, the abovementioned 
liver responses are seen related to the doses and dose 
rate used [28,94]. The bulk liver tissue also contains 
multiple cell types, each of which could have distinct 
epigenomic patterns. Without commentary methods, 
it is challenging to comprehend the extent of these 
possible mechanisms and whether they appear to the 
extent that would affect the overall ATAC-Seq output. 
However, hepatocytes are the dominant cell type in 
the liver [95], and when we compared the gene 
expression profile [36] with single-cell RNA-Seq 
data from flow cytometry separated mouse liver 
cells, the gene expression profile was calculated to 
comprise >98% hepatocytes (data not shown). We, 
therefore, assume that the hepatocyte epigenome 
dominates the signal in these datasets. To detect long- 
term effects after chronic low dose rate exposure may 
require a larger experiment than this current study. 
However, the HDR_late results are evident despite 
inherent experimental factors (like biological repli-
cates and bulk tissue samples), highlighting a critical 
difference in acute and chronic long-term potential 
even though the total dose is the same.

Conclusions

To our knowledge, this is the first study to evaluate the 
impact of ionizing radiation low chronic vs high acute 
dose rate exposure on chromatin accessibility to iden-
tical total dose of 3 Gy. We show that chronic low 
dose rate exposure to a high total dose of 3 Gy do not 
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induce permanent changes in chromatin accessibility, 
in contrast to the acutely given high dose rate of the 
same total dose where repressed promoter regions in 
genes relevant for DNA damage and transcriptional 
regulation were evident. Our results highlight that 
dose rate and exposure regime are relevant factors 
for radiation-induced epigenomic changes to mice 
liver and is important for understanding long-term 
changes after ionizing radiation exposure. However, 
as the ATAC-Seq method alone is insufficient to 
capture the mechanisms leading to the observed 
results, future studies are needed to fully comprehend 
the biological consequence of these findings.
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