• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Folkehelseinstituttet
  • Publikasjoner fra CRIStin FHI
  • View Item
  •   Home
  • Folkehelseinstituttet
  • Publikasjoner fra CRIStin FHI
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spatiotemporal and seasonal dynamics in the microbial communities of a landfill-leachate contaminated aquifer

Abiriga, Daniel; Jenkins, Andrew; Alfsnes, Kristian; Vestgarden, Live Semb; Klempe, Harald
Peer reviewed, Journal article
Published version
Thumbnail
View/Open
Abiriga_2021_Spa.pdf (2.711Mb)
URI
https://hdl.handle.net/11250/2838195
Date
2021
Metadata
Show full item record
Collections
  • Artikler [6801]
  • Publikasjoner fra CRIStin FHI [9375]
Original version
FEMS Microbiology Ecology. 2021, 97 (7), 1-11.   10.1093/femsec/fiab086
Abstract
The microbiome of an aquifer contaminated by landfill leachate and undergoing intrinsic remediation was characterised using 16S rRNA metabarcoding. The archaeal/bacterial V3–V4 hypervariable region of the 16S rRNA gene was sequenced using Illumina MiSeq, and multivariate statistics were applied to make inferences. Results indicate that the aquifer recharge and aquifer sediment samples harbour different microbial communities compared to the groundwater samples. While Proteobacteria dominated both the recharge and groundwater samples, Acidobacteria dominated the aquifer sediment. The most abundant genera detected from the contaminated aquifer were Polynucleobacter, Rhodoferax, Pedobacter, Brevundimonas, Pseudomonas, Undibacterium, Sulfurifustis, Janthinobacterium, Rhodanobacter, Methylobacter and Aquabacterium. The result also shows that the microbial communities of the groundwater varied spatially, seasonally and interannually, although the interannual variation was significant for only one of the wells. Variation partitioning analysis indicates that water chemistry and well distance are intercorrelated and they jointly accounted for most of the variation in microbial composition. This implies that the species composition and water chemistry characteristics have a similar spatial structuring, presumably caused by the landfill leachate plume. The study improves our understanding of the dynamics in subsurface microbial communities in space and time.
Journal
FEMS Microbiology Ecology

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit